TS Register No: 1190/2019-2020 AS Register No:1242/2019-2020 KIIFB Project- Tranche-14: Construction of Regulator cum Bridge at U/S of Perincheri Kadavu across Kutiadi River (Gulika puzha) in Kozhikode District. ## **Detailed Estimate** (Dsor year: 2016, Cost Index Applied for this estimate is 31.06%) | SI No | Description | No | L | В | D | CF | Quantity | Remark | |-------|---|---|---|---|---|---|---|--| | | | Appendix A- | Constructio | n of Regula | ator Cum B | ridge | | | | 1 | od117412/2019_20 RING BUND Puttir gunny /polythene b with puddle clay to 6m height (400 x1 driving length of 4n and angles wherev the work etc comp | ng up ring bund
ags filled with e
form the bund
85x7.5/8.5 or
n on sandy bed
rer necessary in | earth placed
for an avera
equalant-col
for ensuring
ncluding disr | in required on the second in required on the second in requirement of | no of raws a
f 3m includii
IS 2314-19
nchorage ar
bund,drive | it 1.80m apa
ng driving Z
86) driven
nd horizonta
n out sheet | art and filled
I type MS shone raw with
ally braced w | in between the control of contro | | | Long bunds | 2 | 115.000 | 23/7 | 421 | | 230.000 | | | | | 1/5 | 儿婆 | MAN J | Tota | al Quantity | 230.000 m | etre | | | | 4 | | To | tal Deducte | d Quantity | 0.000 met | re | | | | | Moram | MOLDE! | Net Tota | al Quantity | 230.000 m | etre | | | | 0.1 | d | | D-"04.40"0.4 | | D = 4004 | 2055.00 | | 2 | od105120/2019_20 | | | 000 metre @ | 7 T | 7 | Rs 4928 | | | 2 | od105120/2019_20
RING BUND Type
empty gunny/polyt
puddle clay to for
completion of the | -I-Putting up rir
hene bags fille
m bund for an | ng bund as p
d with earth
average he | er approved
placed in 2
eight 2.50m | d shape 3 m
rows at 0.6
including I | bottom wid | dth, 1m top v | width usir
tween wi | | 2 | RING BUND Type-
empty gunny/polyt
puddle clay to for | -I-Putting up rir
hene bags fille
m bund for an | ng bund as p
d with earth
average he | er approved
placed in 2
eight 2.50m | d shape 3 m
rows at 0.6
including I | bottom wid | dth, 1m top v | width usir
tween wi | | 2 | RING BUND Type-
empty gunny/polyt
puddle clay to for
completion of the | I-Putting up rir
hene bags fille
m bund for an
work etc. com | ng bund as p
d with earth
average he
pplete as pe | er approved
placed in 2
eight 2.50m | d shape 3 m
rows at 0.6
including I | bottom wid | dth, 1m top v
d filled in be
nantling the | width usir
tween wi | | 2 | RING BUND Type-
empty gunny/polyt
puddle clay to for
completion of the | -I-Putting up rir
hene bags fille
m bund for an
work etc. com | ng bund as p
d with earth
average he
pplete as pe
60.000 | er approved
placed in 2
eight 2.50m | d shape 3 m
rows at 0.6
including I
D Irrigation | bottom wid | dth, 1m top vid filled in be nantling the | vidth usir
tween wi
bund aft | | 2 | RING BUND Type-
empty gunny/polyt
puddle clay to for
completion of the | -I-Putting up rir
hene bags fille
m bund for an
work etc. com | ng bund as p
d with earth
average he
pplete as pe
60.000 | per approved
placed in 2
sight 2.50m
r 60.1.1 OI | d shape 3 m
rows at 0.6
including I
D Irrigation | bottom widen abour dism | dth,
1m top vid filled in be nantling the 60.000 | width usir
tween wi
bund aft | | 2 | RING BUND Type-
empty gunny/polyt
puddle clay to for
completion of the | -I-Putting up rir
hene bags fille
m bund for an
work etc. com | ng bund as p
d with earth
average he
pplete as pe
60.000 | per approved
placed in 2
sight 2.50m
r 60.1.1 OI | d shape 3 m
rows at 0.6
including I
D Irrigation
Tota | bottom widen abour dism | dth, 1m top vid filled in be nantling the 60.000 110.000 m | vidth usir
tween wi
bund aft
betre | | 2 | RING BUND Type-
empty gunny/polyt
puddle clay to for
completion of the | -I-Putting up rir
hene bags fille
m bund for an
work etc. com | ng bund as p
d with earth
average he
aplete as pe
60.000
110.000 | per approved
placed in 2
sight 2.50m
r 60.1.1 OI | d shape 3 m
rows at 0.6
including I
D Irrigation
Tota
stal Deducte | a Double of Country al Quantity d Quantity al Quantity | dth, 1m top vid filled in behantling the 60.000 110.000 m 0.000 meti | width using tween with bund aft setre | | 3 | RING BUND Type-
empty gunny/polyt
puddle clay to for
completion of the | ol-Putting up ring hene bags filler mobund for an work etc. come to the second | ng bund as p d with earth average he plete as pe 60.000 110.000 Say 170. | per approved placed in 2 sight 2.50m r 60.1.1 OI | Total Deducte Rs 1872.6 r with 5HP | al Quantity d Quantity al Quantity end Quantity al Quantity end Quantity | dth, 1m top vid filled in behantling the 60.000 110.000 170.000 metro 170.000 metro Rs 318 | width using tween with bund aft af | | | empty gunny/polyt puddle clay to for completion of the Cross bund od105111/2019_20 Bailing out water conveyance to site | ol-Putting up ring hene bags filler mobund for an work etc. come to the second | say 170. Say 170. ump- Bailinost of fuel, lu | per approved placed in 2 sight 2.50m r 60.1.1 OI | Total Deducte Net Tota @ Rs 1872.6 r with 5HP I and other s | al Quantity d Quantity al Quantity end Quantity al Quantity end Quantity | dth, 1m top vid filled in behantling the 60.000 110.000 170.000 metro 170.000 metro Rs 318 | width using tween with bund aft af | | | | | | | Tota | al Quantity | 8000.000 | hour | |---|--|---|---|--|---|---|---|---| | | | | | To | otal Deducte | d Quantity | 0.000 hou | r | | | | | | | Net Tota | al Quantity | 8000.000 | hour | | | | | Say 80 | 000.000 hoເ | ur @ Rs 254 | .07 / hour | Rs 203 | 2560.00 | | 4 | od105115/2019_2020 Bailing out water using above 10 hp and up to other stores,pay of state | 20hp ,inclu | iding conve | yance to sit | e and erect | ion, cost of | - | | | | | 10 | -20 HP pum | p-3 nos, 12 | 0 days,8 ho | urs | | | | | | 3*120*8 | | | | | 2880.000 | | | | | | n n | -8- | Tota | al Quantity | 2880.000 | hour | | | | | 1/983 | To | otal Deducte | d Quantity | 0.000 hou | r | | | | - | | 1 2 W | Net Tota | al Quantity | 2880.000 | hour | | | | 619 | Say 28 | 880.000 hoเ | ur @ Rs 439 | .92 / hour | Rs 126 | 6969.60 | | | and other stores,pay of | | 125 | | | 711 00.2.0 | | | | | 0 | 30-
ther En | gineeri | | 50days 8 ho
anisatio | ns | 1200.000 | | | | 0 | Alaan Da | | ng Orga | anisatio | ns
al Quantity | 1200.000 | | | | | Alaan Da | | ng Orga | Total Deducte | ns al Quantity d Quantity | 1200.000
0.000 hou | r | | | | Alaan Da | gineeri | ng Orga | Total Deducte Net Total | ns al Quantity d Quantity al Quantity | 1200.000
0.000 hou
1200.000 | r
hour | | 6 | od106544/2019_2020 Earth work in excavati exceeding 30 cm in depto be levelled and neath | on by mechath, including | Say 12 | 200.000 hou | Total Deducte Net Total ur @ Rs 952 ulic excavate earth, with | al Quantity d Quantity al Quantity .07 / hour or)/manual all lead and | 1200.000 0.000 hou 1200.000 Rs 114 means
lift, dispose | r
hour
2484.00
over areas | | 6 | Earth work in excavati exceeding 30 cm in dep | on by mechath, including | Say 12 | 200.000 hou | Total Deducte Net Total ur @ Rs 952 ulic excavate earth, with | al Quantity d Quantity al Quantity .07 / hour or)/manual all lead and | 1200.000 0.000 hou 1200.000 Rs 114 means
lift, dispose | r
hour
2484.00
over areas | | 6 | Earth work in excavati exceeding 30 cm in dep to be levelled and neat | on by mechath, including dressed a | Say 12 hanical mea g disposal c | 200.000 hours (Hydrau of excavated by Engin | Total Deducte Net Total ur @ Rs 952 ulic excavate earth, with the er in charge | al Quantity d Quantity al Quantity .07 / hour or)/manual all lead and | 1200.000 0.000 hou 1200.000 Rs 114 means
lift, dispose of soil
br> | r
hour
2484.00
over area | | 6 | Earth work in excavati exceeding 30 cm in dep to be levelled and neatl Abutment A1 toe | on by mechath, including dressed a | Say 12 hanical mea g disposal co and as direct | 200.000 hours (Hydrau of excavated by Engire 3.000 | Total Deducte Net Total ur @ Rs 952 ulic excavate earth, with neer in charge 1.000 | al Quantity d Quantity al Quantity .07 / hour or)/manual all lead and | 1200.000 0.000 hou 1200.000 Rs 114 means
lift, dispose of soil
-36.000 | r
hour
2484.00
over area | | 6 | Earth work in excavati exceeding 30 cm in dep to be levelled and neat! Abutment A1 toe Abutment A2 toe | on by mechath, including dressed at 1 | Say 12 hanical mea g disposal co and as direct 12.000 12.000 | 200.000 hours (Hydrau of excavated by Engire 3.000 | Total Deducte Net Total ur @ Rs 952 ulic excavate earth, with neer in charge 1.000 1.000 | al Quantity d Quantity al Quantity .07 / hour or)/manual all lead and | 1200.000 0.000 hou 1200.000 Rs 114 means
lift, dispose of soil
-36.000 -52.800 | r
hour
2484.00
over area | | 6 | Earth work in excavati exceeding 30 cm in dep to be levelled and neat! Abutment A1 toe Abutment A2 toe Lock pier pile cap side | on by mechath, including dressed at 1 1 1 | Say 12 hanical mea g disposal co and as direct 12.000 12.000 13.500 | 200.000 hours (Hydrau of excavated by Engire 3.000 4.400 2.250 | Total Deducte Net Total ur @ Rs 952 ulic excavate earth, with neer in charge 1.000 1.000 | al Quantity d Quantity al Quantity .07 / hour or)/manual all lead and | 1200.000 0.000 hou 1200.000 Rs 114 means
lift, dispose of soil
-36.000 -52.800 -30.375 | r
hour
2484.00
over area | | 6 | Earth work in excavati exceeding 30 cm in dep to be levelled and neatl Abutment A1 toe Abutment A2 toe Lock pier pile cap side Left Abutment A1 | on by mechath, including dressed at 1 1 1 1 | Say 12 hanical mea g disposal co and as direct 12.000 12.000 12.000 | 200.000 hours (Hydrau of excavated by Engire 3.000 4.400 2.250 7.800 | Total Deducte Net Total ur @ Rs 952 ulic excavate earth, with neer in charge 1.000 1.000 1.000 12.732 | al Quantity d Quantity al Quantity .07 / hour or)/manual all lead and | 1200.000 0.000 hou 1200.000 Rs 114 means
lift, dispose of soil
-36.000 -52.800 -30.375 1191.716 | r
hour
2484.00
over areas | | | | | 1 | | | | | |---|--|------------|-------------------|--------------------|--|----------------|-------| | | Gabbion U/S(bet A1 and Lock pier) | 1 | 82.000 | 10.000 | 1.000 | 820.000 | | | | Gabbion D/s (bet a1 and lock pier) | 1 | 82.000 | 16.000 | 1.000 | 1312.000 | | | | Do- U/s side portion | 1 | 21.250 | 3.000 | 1.000 | 63.750 | | | | Do- | 1 | 14.450 | 3.000 | 1.000 | 43.350 | | | | Gabbion D/s side portion | 1 | 16.250 | 3.000 | 1.000 | 48.750 | | | | Do | 1 | 14.450 | 3.000 | 1.000 | 43.350 | | | | Solid Apron | 1 | 82.000 | 2.950 | 1.000 | 241.900 | | | | Do | 1 | 82.000 | 4.450 | 1.200 | 437.881 | | | | Do | 1 | 82.000 | 10.000 | 1.000 | 820.000 | | | | Solid Apron Lock portion | 10 | 76.000 | 18.750 | 1.000 | 1425.000 | | | | Pile cap & levelling coarse main pier | 5 | 11.100 | 4.500 | (.8+.1) | 224.775 | | | | Do- Lock pier | 1 | 13.500 | 5.500 | (.8+.1) | 66.825 | | | | Pile cap & levelling coarse- Lock wall | 1 | 60.000 | 5.500 | (.8+.1) | 297.000 | | | | Do- Lock wall
abutment side | ther En | gineeri
61.200 | ng Orga
- 4.400 | anisations
(.8+.1) | 242.353 | | | | Side cutting for lock wall | 1 | 60.000 | 4.400 | 6.066 | 1601.424 | | | | | | | Toe wall | | | | | | US | 1 | 120.000 | 0.800 | 1.300 | 124.801 | | | | DS | 1 | 112.200 | 0.800 | 1.300 | 116.689 | | | | | | | | Total Quantity | 10375.810 cu | ım | | | | | | To | otal Deducted Quantity | -119.175 cum | า | | | | | | | Net Total Quantity | 10256.635 cu | ım | | | | | Say 10 | 256.635 cui | m @ Rs 175.14 / cum | Rs 179634 | 17.05 | | 7 | • | ns and rem | oval of exca | vated earth | nforcement complete an with all lifts and lead MORTH Specification | upto 1000
ı | _ | | | Pile under Lock Pier | 8 | | | 7.250 | 58.000 | | | | 1 | | | li | 1 | 1 | | | | U/s and D/s of Lock pier | 40 | | | 7.250 | | 290.000 | | |----|---|------------------------|-------------------------------|--------------------------------|-------------|----------------------------|--------------|-----------| | | Under Abutment A | 20 | | | 7.500 | | 150.000 | | | | U/s and
D/s of
Abutment Lock wall | 32 | | | 7.250 | | 232.000 | | | | Under Pier P1 | 6 | | | 6.000 | | 36.000 | | | | P2 | 6 | | | 7.250 | | 43.500 | | | | P3 | 6 | | | 7.750 | | 46.500 | | | | P4 | 6 | | | 7.250 | | 43.500 | | | | P5 | 6 | | | 6.750 | | 40.500 | | | | | | 10 | - M | Tot | al Quantity | 940.000 n | netre | | | | | 7/1 | То | tal Deducte | d Quantity | 0.000 met | tre | | | | | 636 | | Net Tota | al Quantity | 940.000 n | netre | | | | 11 | Say 940. | 000 metre @ | Rs 15942. | 77 / metre | Rs 1498 | 86203.80 | | | Setting out as per Detail | | 73 (0.56) | nm thick) for 1 | 200mm dia | piles | | | | | Avg 3m depth | h430E | 3.000 | 3.140 g | n1:200ic | ns ^{0.05} | 73.476 | | | | | | Ď. | T | Tot | al Quantity | 73.476 M | Т | | | | | K | То | tal Deducte | d Quantity | 0.000 MT | | | | | | | | Net Tot | al Quantity | 73.476 M | Т | | | | | Sa | ıy 73.476 MT | @ Rs 9255 | 9.33 / MT | Rs 680 | 0889.33 | | 9 | od105132/2019_2020 Integrity testing of pile u 14893 including surface lumps etc and use of co submission of results,al | e prepara
mputerise | tion of pile t
ed equipmer | op by removi
nt and high sk | ng soil,mu | d, dust and
ersonal for | chipping lea | an concre | | | | 130 | | | | | 130.000 | | | | | | | | Tot | al Quantity | 130.000 n | 10 | | | | | | То | tal Deducte | d Quantity | 0.000 no | | | | | | | | Net Tot | al Quantity | 130.000 n | 10 | | | | | 5 | Say 130.000 n | o @ Rs 11 | 57.60 / no | Rs 150 | 0488.00 | | 10 | 12.1.4.A Earth work in excavation setting out, construction | | | • | _ | | • | | | | Abutment A1 foundation | 1 | 12.000 | 6.600 | 0.300 | | 23.760 | | |----|--|-------------|--------------|-------------|------------------------|------------------------|-----------|-----------------------| | | | | | | Tota | al Quantity | 23.760 cu | ım | | | | | | To | otal Deducte | d Quantity | 0.000 cun | n | | | | | Sav | / 23.760 cu | Net Tota
m @ Rs 587 | al Quantity 7.42 / cum | 23.760 cu | ım
8 957.10 | | 11 | 12.39 Providing and laying of | PCC M15 | • | | | | | | | | Deduction for piles | 130 | 3.140 | 0.600 | 0.600 | 0.1 | -14.695 | | | | Pier cap | 5 | 11.100 | 4.500 | 0.100 | | 24.975 | | | | Abutment cap A2 | 1 | 12.000 | 9.400 | 0.100 | | 11.281 | | | | Lock Pier cap | 1 | 13.500 | 5.500 | 0.100 | | 7.426 | | | | Lock shutter pier cap us of A2 | B | 30.600 | 4.400 | 0.100 | | 13.465 | | | | Do d/s of A2 | | 30.600 | 4.400 | 0.100 | | 13.465 | | | | Lock shutter pier cap
u/s of Lock pier | 1 | 30.000 | 5.500 | 0.100 | 12.0 | 16.500 | | | | Do- d/s of lock pier | | 30.000 | 5.500 | 0.100 | 115 | 16.500 | | | | | | R | | Tota | Quantity | 103.612 d | um | | | | | | To | otal Deducte | d Quantity | -14.695 c | um | | | | | | | Net Tota | al Quantity | 88.917 cu | ım | | | | | Say | 88.917 cum | n @ Rs 7209 | 0.09 / cum | Rs 64 | 1010.66 | | 12 | od105125/2019_2020 DOWEL BARS - Supply 1m in concrete) includi etc complete as per 60 | ng drilling | holes of 30m | | | | • , | | | | Left Abutment | 132 | | | | | 132.000 | | | | | | | | Tota | al Quantity | 132.000 € | each | | | | | | To | otal Deducte | d Quantity | 0.000 eac | h | | | | | | | Net Tota | al Quantity | 132.000 e | each | | | | | Say 1 | 32.000 eac | h @ Rs 674 | .18 / each | Rs 88 | 991.76 | | 13 | 12.38.B.2
Cement Concrete for | Reinforce | | | | | | | | | R C C Grade M-25 - Us | | | | | | | | |----|---|------------------------------|--|---|--|-------------|--|---------| | | Pier cap | 5 | 11.100 | 4.500 | 1.800 | | 449.550 | | | | Abutment cap A2 | 1 | 12.000 | 9.400 | 1.800 | | 203.041 | | | | Lock Pier cap | 1 | 13.500 | 5.500 | 1.800 | | 133.650 | | | | Lock shutter pier cap us of A2 | 1 | 30.600 | 4.400 | 1.800 | | 242.353 | | | | Do d/s of A2 | 1 | 30.600 | 4.400 | 1.800 | | 242.353 | | | | Lock shutter pier cap
u/s of Lock pier | 1 | 30.000 | 5.500 | 1.800 | | 297.000 | | | | Do- d/s of lock pier | 1 | 30.000 | 5.500 | 1.800 | | 297.000 | | | | | | Ca | R. | Tota | al Quantity | 1864.947 | cum | | | | | -//W | To | otal Deducte | d Quantity | 0.000 cum | 1 | | | | | 33 6 | B 3 | Net Tota | al Quantity | 1864.947 | cum | | | | | Say 18 | 64.947 cum | n @ Rs 8120 |).67 / cum | Rs 1514 | 14619.1 | | | 12.8.B.1 Plain/Reinforced Cem Specifications PCC Grade M20 | 400 | | a sus | | | Ţ
 | Techr | | 14 | Plain/Reinforced Cem
Specifications
PCC Grade M20
Solid apron | ther Er | sin.oori
82.000 | ng _{2.950} rg | anisatio | | 241.900 | Techr | | | Plain/Reinforced Cem
Specifications
PCC Grade M20 | ther Er | 82.000
82.000 | 19 _{2.950} g | 1.200 | | 241.900
437.881 | Techr | | | Plain/Reinforced Cem
Specifications
PCC Grade M20 Solid apron Do | ther Er | 82.000
82.000
82.000 | 4.450
10.000 | 1.200
1.000 | | 241.900
437.881
820.000 | Techr | | | Plain/Reinforced Cem
Specifications
PCC Grade M20 Solid apron Do Lock Portion | ther Er | 82.000
82.000
76.000 | 4.450
10.000
18.750 | 1.000
1.200
1.000
1.000 | | 241.900
437.881
820.000
1425.000 | Techr | | | Plain/Reinforced Cem
Specifications
PCC Grade M20 Solid apron Do Lock Portion Toe wall us | ther Er | 82.000
82.000
76.000
120.000 | 4.450
10.000
18.750
0.800 | 1.000
1.200
1.000
1.000
0.300 | | 241.900
437.881
820.000
1425.000
28.800 | Techr | | | Plain/Reinforced Cem
Specifications
PCC Grade M20 Solid apron Do Lock Portion Toe wall us Do | ther Er | 82.000
82.000
76.000
120.000 | 4.450
10.000
18.750
0.800
0.250 | 1.000
1.200
1.000
1.000
0.300
1.000 | | 241.900
437.881
820.000
1425.000
28.800
30.000 | Techr | | | Plain/Reinforced Cem
Specifications
PCC Grade M20 Solid apron Do Lock Portion Toe wall us Do Toe wall DS | ther Er | 82.000
82.000
76.000
120.000
112.200 | 10.000
18.750
0.800
0.800 | 1.000
1.200
1.000
1.000
0.300
1.000
0.300 | | 241.900
437.881
820.000
1425.000
28.800
30.000
26.928 | Techr | | | Plain/Reinforced Cem
Specifications
PCC Grade M20 Solid apron Do Lock Portion Toe wall us Do | ther Er | 82.000
82.000
76.000
120.000 | 4.450
10.000
18.750
0.800
0.250 | 1.000
1.200
1.000
1.000
0.300
1.000 | | 241.900
437.881
820.000
1425.000
28.800
30.000 | Techn | | | Plain/Reinforced Cem
Specifications
PCC Grade M20 Solid apron Do Lock Portion Toe wall us Do Toe wall DS Do Abument A1 toe | ther Er 1 1 1 1 1 | 82.000
82.000
76.000
120.000
112.200
112.200 | 10.000
10.000
18.750
0.800
0.250
0.250 | 1.000
1.200
1.000
1.000
0.300
1.000
0.300 | | 241.900
437.881
820.000
1425.000
28.800
30.000
26.928
28.050 | Techn | | | Plain/Reinforced Cem
Specifications
PCC Grade M20 Solid apron Do Lock Portion Toe wall us Do Toe wall DS Do Abument A1 toe overlap Lock wall pile cap | ther Er 1 1 1 1 1 1 1 | 82.000
82.000
76.000
120.000
112.200
112.200
12.000 | 10.000
18.750
0.800
0.250
0.250
3.000 | 1.000
1.200
1.000
1.000
0.300
1.000
1.000 | | 241.900
437.881
820.000
1425.000
28.800
30.000
26.928
28.050
-36.000 | Techn | | | Plain/Reinforced Cem
Specifications
PCC Grade M20 Solid apron Do Lock Portion Toe wall us Do Toe wall DS Do Abument A1 toe overlap Lock wall pile cap overlap | ther Er 1 1 1 1 1 1 1 | 82.000
82.000
76.000
120.000
112.200
112.200
12.000
13.500 | 1.950 9
4.450
10.000
18.750
0.800
0.250
0.800
0.250
3.000 | 1.000
1.200
1.000
1.000
0.300
1.000
1.000
1.000 | | 241.900
437.881
820.000
1425.000
28.800
30.000
26.928
28.050
-36.000 | Techn | | | Plain/Reinforced Cem Specifications PCC Grade M20 Solid apron Do Lock Portion Toe wall us Do Toe wall DS Do Abument A1 toe overlap Lock wall pile cap overlap Abutment A2 overlap | ther Er 1 1 1 1 1 1 1 1 1 | 82.000
82.000
76.000
120.000
120.000
112.200
112.200
12.000
12.000 | 10.000
10.000
18.750
0.800
0.250
0.800
0.250
3.000
2.250
4.400 | 1.000
1.200
1.000
1.000
0.300
1.000
1.000
1.000 | | 241.900
437.881
820.000
1425.000
28.800
30.000
26.928
28.050
-36.000
-30.375
-52.800 | Techn | | Lock shutter pier cap aside A2 Lock shutter pier cap aside A2 Lock shutter pier cap aside Lock pier 2 30.000 5.500 1.000 -330.000 Total Quantity 3038.559 cum Total Deducted Quantity -1062.480 cum Net Total Quantity 1976.079 cum Say 1976.079 cum ® Rs 8233.34 / cum Rs 16269730.27 12.8.E.2.1 Plain/Reinforced Cement Concrete in Open Foundation complete as per Drawing and Technica Specifications. RCC Grade M25 - With Batching Plant, Transit Mixer and Concrete Pump Abutment A1 base 1 10.800 12.000 2.500 324.001 Total Quantity 324.001 cum Rs 2616003.51 Total Quantity 324.001 cum Say 324.001 cum ® Rs 8074.06 / cum Rs 2616003.51 6 od114774/2019_2020 Supply, Fitting and PlacingFlusion bonded epoxy coated(confirm to IS 13620-1993) HYSD bar or TM Reinforcement in Foundation complete as per Drawing and Technical Specifications and as per 12.40 MORTH specification-br> Piles 1 940.000 (3.14*6.6) 0.18 191.264 Pile cap 1 1864.947 0.18 326.366 Solid
Apron 1 1976.079 0.004 79.044 Abutment A1 base 1 324.001 0.18 56.701 Total Quantity 653.375 MT Total Quantity 653.375 MT Total Quantity 653.375 MT Rs 59827412.21 17 3.5.E.p.2 Plain/Reinforced cement concrete in sub-structure complete as per drawing and Technical Specification RCC Grade M20 - With Batching Plant, Transit Mixer and Concrete Pump - Height upto 5m Grooves Grooves 1 0.600 0.600 (6-3) -0.720 | | | | | | | | | | |--|----|--|-------------|----------|--|-----------------------------------|--|---|------------------------| | Total Quantity 3038.559 cum Total Quantity 3038.559 cum Total Deducted Quantity -1062.480 cum Net Total Quantity 1976.079 cum Rs 16269730.27 2616003.51 26160 | | | 2 | 30.600 | 4.400 | 1.000 | | -269.280 | | | Total Deducted Quantity 1976.079 cum Net Total Quantity 1976.079 cum Say 1976.079 cum @ Rs 8233.34 / cum Rs 16269730.27 15 12.8.E.2.1 Plain/Reinforced Cement Concrete in Open Foundation complete as per Drawing and Technics Specifications. RCC Grade M25 - With Batching Plant, Transit Mixer and Concrete Pump Abutment A1 base slab 1 10.800 12.000 2.500 324.001 Total Quantity 324.001 cum Net Total Quantity 324.001 cum Net Total Quantity 324.001 cum Rs 2616003.51 16 od114774/2019_2020 Supply, Fitting and PlacingFusion bonded epoxy coated(confirm to IS 13620-1993) HYSD bar or The Reinforcement in Foundation complete as per Drawing and Technical Specifications and as per 12.40 MORTH specification-bro Piles 1 940.000 (3.14*.6*.6 0.18 191.264) Pile cap 1 1864.947 0.18 326.366 Solid Apron 1 1976.079 0.04 79.044 Abutment A1 base 1 324.001 0.18 56.701 Total Quantity 653.375 MT Total Deducted Quantity 0.000 MT Net Total Quantity 653.375 MT Say 653.375 MT @ Rs 91566.73 / MT Rs 59827412.21 17 13.5.E.p.2 Plain/Reinforced cement concrete in sub-structure complete as per drawing and Technical Specification RCC Grade M20 - With Batching Plant, Transit Mixer and Concrete Pump - Height upto 5m Grooves | | | 2 | 30.000 | 5.500 | 1.000 | | -330.000 | | | Net Total Quantity 1976.079 cum Say 1976.079 cum Rs 16269730.27 | | | | | | Tota | al Quantity | 3038.559 | cum | | Say 1976.079 cum @ Rs 8233.34 / cum | | | | | То | tal Deducte | d Quantity | -1062.480 | cum | | 12.8.E.2.1 Plain/Reinforced Cement Concrete in Open Foundation complete as per Drawing and Technical Specifications. RCC Grade M25 - With Batching Plant, Transit Mixer and Concrete Pump | | | | | | Net Tota | al Quantity | 1976.079 | cum | | Plain/Reinforced Cement Concrete in Open Foundation complete as per Drawing and Technics Specifications. RCC Grade M25 - With Batching Plant, Transit Mixer and Concrete Pump | | | | Say 19 | 76.079 cum | @ Rs 8233 | .34 / cum | Rs 1626 | 9730.27 | | Slab | 15 | Plain/Reinforced Cem Specifications. | | | | · | · | rawing and | Technica | | Total Deducted Quantity 0.000 cum Net Total Quantity 324.001 cum Say 324.001 cum @ Rs 8074.06 / cum Rs 2616003.51 | | | 1 | 10.800 | 12.000 | 2.500 | | 324.001 | | | Net Total Quantity 324.001 cum Say 324.001 cum Rs 2616003.51 | | | 619 | N RZ | 51/1 | Tota | al Quantity | 324.001 c | um | | Say 324.001 cum @ Rs 8074.06 / cum Rs 2616003.51 od114774/2019_2020 Supply, Fitting and PlacingFusion bonded epoxy coated(confirm to ISI 13620-1993) HYSD bar or TM Reinforcement in Foundation complete as per Drawing and Technical Specifications and as per 12.40 MORTH specification
Piles 1 940.000 (3.14*.6*.6) 0.18 191.264 Pile cap 1 1864.947 0.18 326.366 Solid Apron 1 1976.079 0.04 79.044 Abutment A1 base 1 324.001 0.18 56.701 Total Quantity 653.375 MT Total Deducted Quantity 0.000 MT Net Total Quantity 653.375 MT Say 653.375 MT @ Rs 91566.73 / MT Rs 59827412.21 17 13.5.E.p.2 Plain/Reinforced cement concrete in sub-structure complete as per drawing and Technical Specification RCC Grade M20 - With Batching Plant, Transit Mixer and Concrete Pump - Height upto 5m Grooves | | | 15 | 41516 | То | tal Deducte | d Quantity | 0.000 cum | 1 | | Odd14774/2019_2020 Supply, Fitting and PlacingFusion bonded epoxy coated(confirm to IS 13620-1993) HYSD bar or TM Reinforcement in Foundation complete as per Drawing and Technical Specifications and as per 12.40 MORTH specification
 Piles | | | 100 | Ka | | Net Tota | al Quantity | 324.001 c | um | | Supply, Fitting and PlacingFusion bonded epoxy coated(confirm to IS 13620-1993) HYSD bar or TM Reinforcement in Foundation complete as per Drawing and Technical Specifications and as per 12.40 MORTH specification
Piles 1 940.000 (3.14*.6*.6 0.18 191.264)
Pile cap 1 1864.947 0.18 326.366 Solid Apron 1 1976.079 0.04 79.044 Abutment A1 base slab 1 324.001 0.18 56.701 Total Quantity 653.375 MT
Total Deducted Quantity 0.000 MT
Net Total Quantity 653.375 MT Rs 59827412.21 13.5.E.p.2 Plain/Reinforced cement concrete in sub-structure complete as per drawing and Technical Specification RCC Grade M20 - With Batching Plant, Transit Mixer and Concrete Pump - Height upto 5m Grooves | | | 200 | Say 3 | 24.001 cum | @ Rs 8074 | .06 / cum | Rs 261 | 6003.51 | | Pile cap 1 1864.947 0.18 191.264 Pile cap 1 1864.947 0.18 326.366 Solid Apron 1 1976.079 0.04 79.044 Abutment A1 base slab 1 324.001 0.18 56.701 Total Quantity 653.375 MT Total Deducted Quantity 0.000 MT Net Total Quantity 653.375 MT Say 653.375 MT @ Rs 91566.73 / MT Rs 59827412.21 17 13.5.E.p.2 Plain/Reinforced cement concrete in sub-structure complete as per drawing and Technical Specification RCC Grade M20 - With Batching Plant, Transit Mixer and Concrete Pump - Height upto 5m Grooves | 10 | Supply, Fitting and Pla
Reinforcement in Foun | dation com | | | | | | | | Solid Apron 1 1976.079 0.04 79.044 Abutment A1 base slab 1 324.001 0.18 56.701 Total Quantity 653.375 MT Total Deducted Quantity 0.000 MT Net Total Quantity 653.375 MT Say 653.375 MT @ Rs 91566.73 / MT Rs 59827412.21 17 13.5.E.p.2 Plain/Reinforced cement concrete in sub-structure complete as per drawing and Technical Specification RCC Grade M20 - With Batching Plant, Transit Mixer and Concrete Pump - Height upto 5m Grooves | | Piles | 1 | 940.000 | ` . | | 0.18 | 191.264 | | | Abutment A1 base slab 1 324.001 0.18 56.701 Total Quantity 653.375 MT Total Deducted Quantity 0.000 MT Net Total Quantity 653.375 MT Say 653.375 MT @ Rs 91566.73 / MT Rs 59827412.21 17 13.5.E.p.2 Plain/Reinforced cement concrete in sub-structure complete as per drawing and Technical Specification RCC Grade M20 - With Batching Plant, Transit Mixer and Concrete Pump - Height upto 5m Grooves | | Pile cap | 1 | 1864.947 | | | 0.18 | 326.366 | | | Slab Total Quantity 653.375 MT Total Deducted Quantity 0.000 MT Net Total Quantity 653.375 MT Say 653.375 MT @ Rs 91566.73 / MT Rs 59827412.21 17 13.5.E.p.2 Plain/Reinforced cement concrete in sub-structure complete as per drawing and Technical Specification RCC Grade M20 - With Batching Plant, Transit Mixer and Concrete Pump - Height upto 5m Grooves | | Solid Apron | 1 | 1976.079 | | | 0.04 | 79.044 | | | Total Deducted Quantity 0.000 MT Net Total Quantity 653.375 MT Say 653.375 MT @ Rs 91566.73 / MT Rs 59827412.21 17 13.5.E.p.2 Plain/Reinforced cement concrete in sub-structure complete as per drawing and Technical Specification RCC Grade M20 - With Batching Plant, Transit Mixer and Concrete Pump - Height upto 5m Grooves | | | 1 | | | | | | | | Net Total Quantity Say 653.375 MT Say 653.375 MT @ Rs 91566.73 / MT Rs 59827412.21 17 13.5.E.p.2 Plain/Reinforced cement concrete in sub-structure complete as per drawing and Technical Specification RCC Grade M20 - With Batching Plant, Transit Mixer and Concrete Pump - Height upto 5m Grooves | | slab | ı | 324.001 | | | 0.18 | 56.701 | | | Say 653.375 MT @ Rs 91566.73 / MT Rs 59827412.21 17 13.5.E.p.2 Plain/Reinforced cement concrete in sub-structure complete as per drawing and Technical
Specification RCC Grade M20 - With Batching Plant, Transit Mixer and Concrete Pump - Height upto 5m Grooves | | slab | ı | 324.001 | | Tota | | | 1T | | 17 13.5.E.p.2 Plain/Reinforced cement concrete in sub-structure complete as per drawing and Technical Specification RCC Grade M20 - With Batching Plant, Transit Mixer and Concrete Pump - Height upto 5m Grooves | | slab | ı | 324.001 | To | | al Quantity | 653.375 M | 1T | | Plain/Reinforced cement concrete in sub-structure complete as per drawing and Technical Specification RCC Grade M20 - With Batching Plant, Transit Mixer and Concrete Pump - Height upto 5m Grooves | | slab | 1 | 324.001 | To | tal Deducte | al Quantity | 653.375 M
0.000 MT | | | | | slab | ı | | | tal Deducte | al Quantity d Quantity al Quantity | 653.375 M
0.000 MT
653.375 M | 1T | | Grooves 1 0.600 0.600 (5-3) -0.720 | 17 | 13.5.E.p.2
Plain/Reinforced cemer | nt concrete | Say 6 | 653.375 MT | Net Tota @ Rs 9156 e as per dra | al Quantity d Quantity al Quantity 6.73 / MT | 653.375 M
0.000 MT
653.375 M
Rs 5982 | 1T
2 7412.21 | | | 17 | 13.5.E.p.2
Plain/Reinforced cemer | nt concrete | Say 6 | 653.375 MT
ure complet
Mixer and (| Net Tota @ Rs 9156 e as per dra | al Quantity d Quantity al Quantity 6.73 / MT | 653.375 M
0.000 MT
653.375 M
Rs 5982 | 1T
2 7412.21 | | Lock Pier | 1 | 9.900 | 3.000 | 5.000 | | 148.500 | | | |---|--------------|--|---|--|-------------|---|----------|--| | Lock shutter pier bank side | 2 | 14.250 | 2.200 | 6.200 | | 388.740 | | | | Do | 2 | 7.350 | 3.000 | 6.200 | | 273.420 | | | | Lock wall water side | 2 | 9.500 | (4+2.91)/2 | 5.000 | | 328.225 | | | | Shutter pier water side | 2 | 14.250 | 2.200 | 5.000 | | 313.500 | | | | Do | 2 | 3.000 | 1.500 | 5.000 | | 45.000 | | | | Do | 2 | 3.140 | (1.5*1.5)/2 | 5.000 | | 35.325 | | | | Do | 2 | 0.800 | 0.800 | 5.000 | | 6.401 | | | | | | | | Tota | al Quantity | 1539.111 | cum | | | | | /Ga | То | tal Deducte | d Quantity | -0.720 cui | m | | | | | 10 | 11 500 | Net Tota | al Quantity | 1538.391 | cum | | | | | Say 15 | 38.391 cum | @ Rs 7943 | 3.19 / cum | Rs 122 | 19732.01 | | | Plain/Reinforced cement concrete in sub-structure complete as per drawing and Technical Specification RCC Grade M25 - With Batching Plant, Transit Mixer and Concrete Pump - Height upto 5m | _eft Abutmen | | | | | | | Counter Fort | 2
ther E: | 6.600 | 0.600 | 5.000 | 72 C | 39.600 | | | | Counter Fort Do | ther E | 6.600 | 0.600 | | ns | 39.600
66.600 | | | | 0 | ther E | 6.600
(6.6+4.5)/ | 0.600
ng Orga | 5.000
anisatio | ns | | | | | Do | ther E | 6.600 | 0.600
ng Orga
0.600 | 5.000
anisatio
5.000 | ns | 66.600 | | | | Do | ther E | 6.600 | 0.600
ng Orga
0.600 | 5.000
anisatio
5.000 | ns | 66.600 | | | | Do Stem | ther E | 6.600
(6.6+4.5)/
2
12.000
2*(3.14*1* | 0.600
ng Orga
0.600 | 5.000
5.000
5.000 | ns | 66.600
72.000 | | | | Do Stem semi Circular portion Do- Rectangular | ther E | 6.600
(6.6+4.5)/
2
12.000
2*(3.14*1*
1)/2 | 0.600
0.600
1.200
Tresle Pier | 5.000
5.000
5.000 | ns | 66.600
72.000
78.500 | | | | Do Stem semi Circular portion Do- Rectangular Portion | ther E | 6.600
(6.6+4.5)/
2
12.000
2*(3.14*1*
1)/2
2.000
3.140 | 0.600
0.600
1.200
Tresle Pier | 5.000
5.000
5.000
5.000
5.000 | ns | 72.000
78.500
100.000 | | | | Do Stem semi Circular portion Do- Rectangular Portion | ther E | 6.600
(6.6+4.5)/
2
12.000
2*(3.14*1*
1)/2
2.000
3.140 | 0.600
1.200
Tresle Pier
2.000
(1.7*1.7)/4 | 5.000
5.000
5.000
5.000
5.000 | ns | 72.000
78.500
100.000 | | | | Do Stem semi Circular portion Do- Rectangular Portion Circular Column | ther E | 6.600
(6.6+4.5)/
2
12.000
2*(3.14*1*
1)/2
2.000
3.140 | 0.600 1.200 1.200 Tresle Pier 2.000 (1.7*1.7)/4 Vertical Slab | 5.000
5.000
5.000
5.000
5.000
5.000 | ns | 66.600
72.000
78.500
100.000
56.717 | | | | Do Stem semi Circular portion Do- Rectangular Portion Circular Column | ther E | 6.600
(6.6+4.5)/
2
12.000
2*(3.14*1*
1)/2
2.000
3.140 | 0.600 1.200 Tresle Pier 2.000 (1.7*1.7)/4 Vertical Slab | 5.000
5.000
5.000
5.000
5.000
5.000 | ns | 66.600
72.000
78.500
100.000
56.717 | | | | Do Stem semi Circular portion Do- Rectangular Portion Circular Column | 5
5
5 | 6.600
(6.6+4.5)/
2
12.000
2*(3.14*1*
1)/2
2.000
3.140
12.000
Loc
9.000 | 0.600 1.200 1.200 Tresle Pier 2.000 (1.7*1.7)/4 Vertical Slab 0.600 k wall Land s | 5.000
5.000
5.000
5.000
5.000
5.000
3.000
side
6.200 | ns | 66.600
72.000
78.500
100.000
56.717 | | | | Do Stem semi Circular portion Do- Rectangular Portion Circular Column | 5
5
5 | 6.600
(6.6+4.5)/
2
12.000
2*(3.14*1*
1)/2
2.000
3.140
12.000
Loc
9.000 | 0.600 1.200 1.200 Tresle Pier 2.000 (1.7*1.7)/4 Vertical Slab 0.600 k wall Land s 1.200 | 5.000
5.000
5.000
5.000
5.000
5.000
3.000
side
6.200 | ns | 66.600
72.000
78.500
100.000
56.717 | | | | | Stem | 1 | 12.000 | 2.200 | 6.200 | | 163.680 | | |----|---|-----------------|--------------------|--------------|-------------------|-------------|------------|---------| | | | | | grooves | | | | T | | | deduction for grooves | 11 | 0.600 | 0.600 | (5-3) | | -7.920 | | | | | | | | Tota | al Quantity | 923.201 c | um | | | | | | То | tal Deducte | d Quantity | -7.920 cui | m | | | | | | | Net Tota | al Quantity | 915.281 c | um | | | | | Say 9 | 15.281 cum | @ Rs 8560 | .45 / cum | Rs 783 | 5217.24 | | 19 | od151400/2019_2020 Plain/Reinforced of Technical
br>Specification Height above 5m. Specification Specification (Control of the Control | ations RCC | Grade M25 | - With Batch | hing Plant, T | • | • | _ | | | | | lef | t Abutment / | A1 | | I | T | | | CF | 2 | 6.600 | 0.600 | 10.719 | | 84.895 | | | | Do | 4 | (4.5+0)/2 | 0.600 | 10.719 | | 57.883 | | | | Stem | 1 | 12.000 | 1.200 | 10.719 | | 154.354 | | | | | 101 | Line | Tresle Pier | المراوي إ | L. | | | | | Semi Circular portion | 5 | 2*(3.14*1*
1)/2 | 50 | 7.350 | | 115.396 | | | | Rectangle | the 5 Er | g 2.000 j | n 2.000 g | n 7 :350i0 | ns | 147.000 | | | | Circular column | 5 | 3.140 | (1.7*1.7)/4 | 7.819 | 7 | 88.693 | | | | Conical portion | 5 | .5*(1/3) | 3.14*1*1 | 1.000 | ₹, | 2.617 | | | | do rectangle portion | 5 | 2.000 | 2.000 | 1.769 | | 35.380 | | | | | | F | Abutment A2 | 2 | | | | | | CF | 2 | 5.700 | 0.600 | 4.519 | | 30.910 | | | | Do | 4 | (2.403+0)/ | 0.600 | 4.519 | | 13.031 | | | | Stem | 1 | 12.000 | 1.200 | 4.519 | | 65.074 | | | | | | | Grooves | | | | | | | Left Abutment | 1 | 0.600 | 0.600 | 10.719 | | -3.858 | | | | Pier | 10 | 0.600 | 0.600 | 9.119 | | -32.828 | | | | | | Н | launch Bear | m | | | | | | Bracing beam | 5 | 5.050 | 0.400 | 0.400 | | 4.040 | | | | Pier Cap | 5 | 7.925 | 2.000 | 1.300 | | 103.025 | | | | Left Abutment | 1 | 2.000 | 1.200 | 6.131 | | 14.715 | | | Pier | | | | | | | | | |
---|----|---|--------------|-------------|------------------------|-------------------|-------------|------------|---------| | Abutment A2 | | Pier | 5 | 2.000 | 0.700 | 5.731 | | 40.117 | | | Dirt wall A1 and A2 | | Do | 5 | 1.300 | 0.800 | 5.731 | | 29.802 | | | Do 2 1.711 0.400 10.000 13.689 | | Abutment A2 | 1 | 2.000 | 1.200 | 6.131 | | 14.715 | | | Total Quantity 1024.936 cum Total Deducted Quantity -36.686 cum Net Total Quantity 988.250 cum Say 988.250 cum ® Rs 8840.60 / cum Rs 8736722.9 20 od115632/2019_2020 Plain/Reinforced Cement Concrete in sub-structure complete as per drawing and
Specifications
Specifications-br>PCC Grade M20 - With Batching Plant, Transit Mixer and Concrete Pump Heabove 5m -as per 13.5.E.q.2 MORTH Specification Groove Groove Groove lock pier 1 0.600 0.600 14.850 -5.346 Lock Pier 1 9.900 3.000 4.200 124.741 Do 1 9.900 2.000 4.950 98.010 Do 1 2.000 2.000 5.970 23.880 Lockwall water side 0 1.2 14.250 2.200 4.200 263.341 Do 2 3.000 1.500 4.200 37.801 Do 2 3.000 1.500 4.200 37.801 Do 2 3.000 1.500 4.200 5.377 Do 2 3.140 (1.5*1.5)/2 4.200 2.9.673 Do 2 0.800 0.800 4.200 5.377 Total Deducted Quantity 798.588 cum Say 798.588 cum @ Rs 8203.15 / cum Rs 6550937.1 21 od105133/2019_2020 Supply, Fitting and PlacingFusion bonded epoxy coated(confirm to IS 13620-1993) HYSD bar or Reinforcement in substructure complete as per Drawing and Technical Specifications and as per 13 MORTH specifications
PCC M20 1 10538.391 0.04 93.480 | | Dirt wall A1 and A2 | 2 | 1.200 | 0.400 | 10.000 | | 9.600 | | | Total Deducted Quantity | | Do | 2 | 1.711 | 0.400 | 10.000 | | 13.689 | | | Net Total Quantity 988.250 cum Say 988.250 cum © Rs 8840.60 / cum Rs 8736722.9 | | | | | | Tota | al Quantity | 1024.936 | cum | | Say 988.250 cum @ Rs 8840.60 / cum Rs 8736722.9 20 | | | | | To | tal Deducte | d Quantity | -36.686 c | um | | 20 | | | | | | Net Tota | al Quantity | 988.250 c | um | | Plain/Reinforced Cement Concrete in sub-structure complete as per drawing and
Specifications
Specifications
Specifications
Specifications
Groove
Groove Inches in the property of pro | | | | Say | 988.250 cum | @ Rs 8840 |).60 / cum | Rs 873 | 6722.95 | | Groove lock pier 1 0.600 0.600 14.850 -5.346 Lock Pier 1 9.900 3.000 4.200 124.741 Do 1 9.900 2.000 4.950 98.010 Do 1 2.000 2.000 5.970 23.880 Lockwall water side 1 2 14.250 2.200 4.200 263.341 Do 2 3.000 1.500 4.200 37.801 Do 2 3.000 1.500 4.200 25.201 Do 2 3.140 (1.5*1.5)/2 4.200 29.673 Do 2 0.800 0.800 4.200 5.377 Total Quantity 803.934 cum Total Deducted Quantity 798.588 cum Say 798.588 cum @ Rs 8203.15 / cum Rs 6550937.1 21 od105133/2019_2020 Supply, Fitting and PlacingFusion bonded epoxy coated(confirm to IS 13620-1993) HYSD bar or Reinforcement in substructure complete as per Drawing and Technical Specifications and as per 13 MORTH specifications
PCG M20 1 (1538.391) | | Specifications
br>PC | C Grade M | 20 - With E | Batching Pla ification | • | • | • | | | Lock Pier 1 9.900 3.000 4.200 124.741 Do 1 9.900 2.000 4.950 98.010 Do 1 2.000 2.000 5.970 23.880 Lockwall water side 1 14.250 2.200 4.200 263.341 Do 2 3.000 1.500 4.200 37.801 Do 2 3.000 1.500 4.200 25.201 Do 2 3.140 (1.5*1.5)/2 4.200 29.673 Do 2 0.800 0.800 4.200 5.377 Total Quantity 803.934 cum Total Deducted Quantity 798.588 cum Reinforcement in substructure complete as per Drawing and Technical Specifications and as per 13 MORTH specifications
MORTH specifications
PCC M20 1 1 (1538.391) 0.04 93.480 | | | f + " | N/ | Groove | 1. 4. | | | | | Do | | Groove lock pier | 1 | 0.600 | 0.600 | 14.850 | | -5.346 | | | Do | | Lock Pier | 1 | 9.900 | 3.000 | 4.200 | 20 | 124.741 | | | Lockwall water side Che 2 | | Do | 1 | 9.900 | 2.000 | 4.950 | | 98.010 | | | Shutter pier water side 2 14.250 2.200 4.200 263.341 Do 2 3.000 1.500 4.200 37.801 Do 2 3.000 1.000 4.200 25.201 Do 2 3.140 (1.5*1.5)/2 4.200 29.673 Do 2 0.800 0.800 4.200 5.377 Total Quantity 803.934 cum Total Deducted Quantity 798.588 cum Net Total Quantity 798.588 cum Say 798.588 cum @ Rs 8203.15 / cum Rs 6550937.1 21 od105133/2019_2020 Supply, Fitting and PlacingFusion bonded epoxy coated(confirm to IS 13620-1993) HYSD bar or Reinforcement in substructure complete as per Drawing and Technical Specifications and as per 13 MORTH specifications
DO 0 4 93.480 | | Do | 1 | 2.000 | 2.000 | 5.970 | | 23.880 | | | Do 2 3.000 1.500 4.200 37.801 Do 2 3.000 1.000 4.200 25.201 Do 2 3.140 (1.5*1.5)/2 4.200 29.673 Do 2 0.800 0.800 4.200 5.377 Total Quantity 803.934 cum Total Deducted Quantity -5.346 cum Net Total Quantity 798.588 cum Say 798.588 cum @ Rs 8203.15 / cum Rs 6550937.1 21 od105133/2019_2020 Supply, Fitting and PlacingFusion bonded epoxy coated(confirm to IS 13620-1993) HYSD bar or Reinforcement in substructure complete as per Drawing and Technical Specifications and as per 13 MORTH specifications
PCC M20 1 (1538.391) 0.04 93.480 | | Lockwall water side | thez Er | g19.500T | (2.91+2)/2 | 111 <u>20</u> 610 | ns | 195.910 | | | Do 2 3.000 1.000 4.200 25.201 Do 2 3.140 (1.5*1.5)/2 4.200 29.673 Do 2 0.800 0.800 4.200 5.377 Total Quantity 803.934 cum Total Deducted Quantity -5.346 cum Net Total Quantity 798.588 cum Say 798.588 cum @ Rs 8203.15 / cum Rs 6550937.1 21 od105133/2019_2020 Supply, Fitting and PlacingFusion bonded epoxy coated(confirm to IS 13620-1993) HYSD bar or Reinforcement in substructure complete as per Drawing and Technical Specifications and as per 13 MORTH specifications | | Shutter pier water side | 2 | 14.250 | 2.200 | 4.200 | 7 | 263.341 | | | Do 2 3.140 (1.5*1.5)/2 4.200 29.673 Do 2 0.800 0.800 4.200 5.377 Total Quantity 803.934 cum Total Deducted Quantity -5.346 cum Net Total Quantity 798.588 cum Say 798.588 cum @ Rs 8203.15 / cum Rs 6550937.1 21 od105133/2019_2020 Supply, Fitting and PlacingFusion bonded epoxy coated(confirm to IS 13620-1993) HYSD bar or Reinforcement in substructure complete as per Drawing and Technical Specifications and as per 13 MORTH specifications | | Do | 2 | 3.000 | 1.500 | 4.200 | | 37.801 | | | Do 2 0.800 0.800 4.200 5.377 Total Quantity 803.934 cum Total Deducted Quantity -5.346 cum Net Total Quantity 798.588 cum Say 798.588 cum @ Rs 8203.15 / cum Rs 6550937.1 21 od105133/2019_2020 Supply, Fitting and PlacingFusion bonded epoxy coated(confirm to IS 13620-1993) HYSD bar or Reinforcement in substructure complete as per Drawing and Technical Specifications and as per 13 MORTH specifications
PCC M20 1 (1538.391) 0.04 93.480 | | Do | 2 | 3.000 | 1.000 | 4.200 | | 25.201 | | | Total Quantity 803.934 cum Total Deducted Quantity -5.346 cum Net Total Quantity 798.588 cum Say 798.588 cum @ Rs 8203.15 / cum Rs 6550937.1 21 od105133/2019_2020 Supply, Fitting and PlacingFusion bonded epoxy coated(confirm to IS 13620-1993) HYSD bar or Reinforcement in substructure complete as per Drawing and Technical Specifications and as per 13 MORTH specifications
PCC M20 1 (1538.391) 0.04 93.480 | | Do | 2 | 3.140 | (1.5*1.5)/2 | 4.200 | | 29.673 | | | Total Deducted Quantity -5.346 cum Net Total Quantity 798.588 cum Say 798.588 cum @ Rs 8203.15 / cum Rs 6550937.1 21 od105133/2019_2020 Supply, Fitting and PlacingFusion bonded epoxy coated(confirm to IS 13620-1993) HYSD bar or Reinforcement in substructure complete as per Drawing and Technical Specifications and as per 13 MORTH specifications
PCC M20 1 (1538.391) 0.04 93.480 | | Do | 2 | 0.800 | 0.800 | 4.200 | | 5.377 | | | Net Total Quantity 798.588 cum Say 798.588 cum @ Rs 8203.15 / cum Rs 6550937.1 21 od105133/2019_2020 Supply, Fitting and PlacingFusion bonded epoxy coated(confirm to IS 13620-1993) HYSD bar or Reinforcement in substructure complete as per Drawing and Technical Specifications and as per 13 MORTH specifications
PCC M20 1 (1538.391 0.04 93.480 | | | | | | Tota | al Quantity | 803.934 c | um | | Say 798.588 cum @ Rs 8203.15 / cum Rs 6550937.1 21 od105133/2019_2020 Supply, Fitting and
PlacingFusion bonded epoxy coated(confirm to IS 13620-1993) HYSD bar or Reinforcement in substructure complete as per Drawing and Technical Specifications and as per 13 MORTH specifications
PCC M20 1 (1538.391 0.04 93.480 | | | | | То | tal Deducte | d Quantity | -5.346 cui | m | | od105133/2019_2020 Supply, Fitting and PlacingFusion bonded epoxy coated(confirm to IS 13620-1993) HYSD bar or Reinforcement in substructure complete as per Drawing and Technical Specifications and as per 13 MORTH specifications
PCC M20 1 (1538.391 0.04 93.480 | | | | | | Net Tota | al Quantity | 798.588 c | um | | Supply, Fitting and PlacingFusion bonded epoxy coated(confirm to IS 13620-1993) HYSD bar or Reinforcement in substructure complete as per Drawing and Technical Specifications and as per 13 MORTH specifications
PCC M20 1 (1538.391 0.04 93.480 | | | | Say | 798.588 cum | @ Rs 8203 | 3.15 / cum | Rs 655 | 0937.15 | | PCC M20 1 (1538.391 0.04 93.480 | 21 | Supply, Fitting and Pla
Reinforcement in subst | tructure cor | | • | | | • | | | | | | | , | | | 0.04 | 93.480 | | | | RCC M25 | 1 | (915.281+
988.25) | | | 0.18 | 333.118 | | |----|---|------------------------------|----------------------|-------------|-------------------------|-------------|----------------------|----------------| | | | | | | Tota | al Quantity | 426.598 N | 1T | | | | | | То | tal Deducte | d Quantity | 0.000 MT | | | | | | | | Net Tota | al Quantity | 426.598 N | ΙΤ | | | | | Say 4 | 426.598 MT | @ Rs 9184 | 2.80 / MT | Rs 391 | 79954.79 | | 22 | 14.1A.2.2.C "Furnishing and Placiand Concrete Pump affor T-beam & slab - H | as per drawi | ing and Tech | | | sing Batchi | ng Plant, Ti | ansit Mi | | | 7 spans | 7 | 53.000 | (| | | 371.000 | | | | | | //66 | 1668 | Tota | al Quantity | 371.000 c | um | | | | | C.0 1 | To | tal Deducte | d Quantity | 0.000 cun | 1 | | | | | N 5 | E W | Net Tota | al Quantity | 371.000 c | um | | | | 1 h | Say 3 | 71.000 cum | @ Rs 9665 | 5.04 / cum | Rs 358 | 5729.84 | | | Hand Rails | | 98.400 | To | Tota | al Quantity | 196.800 n 0.000 me | | | | | | | | | al Quantity | 196.800 n | netre | | | | | Say 196. | 800 metre (| @ Rs 2053.7 | 72 / metre | Rs 404 | 1172.10 | | 24 | od105140/2019_2020
Supply, Fitting and P
Reinforcement in Sup
of MORTH specification | lacingFusior
er structure | • | , | | | , | | | | Deck | 1 | 371.000 | | | 0.18 | 66.780 | | | | | | | | · | | 66.780 M | | | | | | | | Tota | al Quantity | 00.700 IVI | Γ | | | | | | То | Tota | • | 0.000 MT | Γ | | | | | | То | tal Deducte | • | | | | | | | Say | To | tal Deducte
Net Tota | d Quantity | 0.000 MT
66.780 M | | | | | 1 | 97.600 | 7.500 | 0.050 | | 36.600 | | |----|---|---|---|---|---|--|---|--| | | | 1 | 97.600 | 7.500 | 0.050*2/3 | | 24.400 | | | | | | | | Tota | al Quantity | 61.000 cu | m | | | | | | To | otal Deducte | d Quantity | 0.000 cum | 1 | | | | | | | Net Tota | al Quantity | 61.000 cu | m | | | | | Say 6 | 1.000 cum | @ Rs 14448 | .87 / cum | Rs 881 | 381.07 | | 26 | 13.10 Providing and laying or requirements laid dow mm with smaller size surface behind abutm complete as per draw | n in clause
towards th
nent, wing | 2504.2.2. of
e soil and bi
wall and retu | MoRTH sp
igger size t
urn wall to | ecifications
owards the | to a thickne
wall and p | ess of not les
rovided ove | ss than 600
r the entire | | | Behind Abutment A1 | 1 | 12.000 | 0.600 | 15.719 | | 113.177 | | | | Behind A2 | 1 | 12.000 | 0.600 | 10.719 | | 77.177 | | | | | 11 | DAG | 20/1 | Tota | al Quantity | 190.354 с | um | | | | | | To | otal Deducte | d Quantity | 0.000 cum | 1 | | | | | | | | | | | | | | 16/40 | Ka | York, | Net Tota | al Quantity | 190.354 c | um | | | | 146 | Say 1 | 90.354 cun | Net Tota
n @ Rs 3117 | • | | um
3 521.87 | | 27 | od143136/2019_2020
PVC WEEP HOLES-
including cost of mate | | veep holes u | ng Org
sing 75mm | n @ Rs 3117 | .99 / cum | Rs 593 | 3521.87 | | 27 | PVC WEEP HOLES- | | veep holes u | ng Org
sing 75mm | n @ Rs 3117 | .99 / cum | Rs 593 | 3521.87 | | 27 | PVC WEEP HOLES-including cost of mate | erials, conv | veep holes u | ng Org
sing 75mm | n @ Rs 3117 | .99 / cum | Rs 593 | 3521.87 | | 27 | PVC WEEP HOLES-including cost of mate | erials, conv | veep holes u
eyance, labo | ng Org
sing 75mm | dia. PVC p | .99 / cum | Rs 593 | 3 521.87
4kg /sq.cm | | 27 | PVC WEEP HOLES-including cost of mate | erials, conv | veep holes u
eyance, labo | sing 75mm
ur charges | dia. PVC p | ipes workingte. | Rs 593 | 3521.87
4kg /sq.cm | | 27 | PVC WEEP HOLES-including cost of mate | erials, conv | veep holes u
eyance, labo | sing 75mm
ur charges | dia. PVC p etc. comple | ipes workingte. | Rs 593 ng pressure 115.000 115.000 230.000 m | 3521.87
4kg /sq.cm
netre | | 27 | PVC WEEP HOLES-including cost of mate | erials, conv | veep holes u
eyance, labo
115.000
115.000 | sing 75mm
ur charges | dia. PVC p etc. comple | ipes working te. al Quantity d Quantity al Quantity | Rs 593 ng pressure 115.000 115.000 230.000 met 230.000
m | 3521.87
4kg /sq.cm
netre | | 27 | PVC WEEP HOLES-including cost of mate | abion structives as per the tolerance selvedged per meter pr>supplied | veep holes useyance, labout 115.000 115.000 Say 230 ture with Medis 16014:200 are of ± 2%) with partition of corporation of the | chanically \text{2.000 metre} chanically \text{12,MORTH} Zinic+PVC as
perpendicureight of G | Total Deducted Net Total Deducted Rs 127.4 Woven Doubt Clause
Vory 1m interpretable to twist, sabion boxe | ipes working with ipes ipes ipes ipes ipes ipes ipes ipes | Rs 593 Ing pressure 115.000 115.000 230.000 met 230.000 m Rs 29 Cor>Hexagor quired size, re diameter: hall have m lacing wire of th boulders | assets.87 4kg /sq.cn hetre re netre 311.20 hal Shaper Mesh Type 2.7/3.7mm inimum 10 of diamete with leas | | | PVC WEEP HOLES-including cost of mate Left Abutment Right Abutment od105144/2019_2020 Providing & making Gabier Mire mesh Gabier Bound 10x12(D=100 mm wind mechanically edged/snumbers of openings 2.2/3.2mm(ID/OD),
to including cost of mate and materials | abion structives as per the tolerance selvedged per meter pr>supplied | veep holes useyance, labout 115.000 115.000 Say 230 ture with Medis 16014:200 are of ± 2%) with partition of corporation of the | chanically \text{2.000 metre} chanically \text{12,MORTH} Zinic+PVC as
perpendicureight of G | Total Deducted Net Total Deducted Rs 127.4 Woven Doubt Clause
Vory 1m interpretable to twist, sabion boxe | ipes working with ipes ipes ipes ipes ipes ipes ipes ipes | Rs 593 Ing pressure 115.000 115.000 230.000 met 230.000 m Rs 29 Cor>Hexagor quired size, re diameter: hall have m lacing wire of th boulders | assets. 4kg /sq.cn hetre re netre 311.20 hal Shaped Mesh Type 2.7/3.7mm inimum 10 of diamete with leas | | | U/s side | 1 | 21.750 | 3.000 | 1.000 | | 65.250 | | |----|--|--|--|--|--|--|--|---| | | Do | 1 | 16.250 | 3.000 | 1.000 | | 48.750 | | | | D/s side | 1 | 15.100 | 3.000 | 1.000 | | 45.300 | | | | Do | 1 | 15.100 | 3.000 | 1.000 | | 45.300 | | | | | | | | Tota | al Quantity | 2336.600 | cum | | | | | | To | tal Deducte | d Quantity | 0.000 cum | 1 | | | | | | | Net Tota | al Quantity | 2336.600 | cum | | | | | Say 23 | 36.600 cum | @ Rs 4010 |).73 / cum | Rs 937 | 1471.72 | | | Providing and laying o mm, complete as pe manufacturer/supplier instructions for installa | er approve
or their au | d drawings
thorised rep | and stand | dard speci
e ensuring | fications to | o be instal | led by the | | | | | 0.100 | 37/1 | Tots | al Quantity | 67.600 me | otro | | | | NA | DE | To | tal Deducte | \ . | 0.000 met | | | | | 8 / 7 / | | | tai Boadoto | a Qualitity | 0.000 11100 | | | | | | | | Net Tota | al Quantity | 67.600 me | etre | | | 10.14 | Here | 1909 | a de la | @ Rs 9970.6 | | 67.600 me | etre
1015.94 | | 30 | Supplying, fitting and f (Part-II) section IX and drawing and Technical Pier | ixing in post
clause 200
Specificati
36 | ition true to
05 of MoRTI
ons.
63.000 | ng Orgaline and level specification 22.000 | © Rs 9970.6 anisatio vel elastome ons comple 6.100 | 65 / metre | Rs 674 conforming all accessor 304365.60 | to IRC: 8 | | 30 | Supplying, fitting and f (Part-II) section IX and drawing and Technical | ixing in pos
clause
200
Specificati | ition true to
05 of MoRTI | ng Orgaline and levels specification | @ Rs 9970.6 anisatio vel elastome ons comple 6.100 | 65 / metre OS Peric bearing Ste including | Rs 674 conforming all accesso 304365.60 1 50727.601 | to IRC: 8: | | 30 | Supplying, fitting and f (Part-II) section IX and drawing and Technical Pier | ixing in post
clause 200
Specificati
36 | ition true to
05 of MoRTI
ons.
63.000 | ng Orgaline and level specification 22.000 | @ Rs 9970.6 anisatio vel elastome ons comple 6.100 Tota | 65 / metre Seric bearing the including al Quantity | Rs 674 conforming all accesso 304365.60 1 50727.601 355093.20 | to IRC: 8: pries as pe | | 30 | Supplying, fitting and f (Part-II) section IX and drawing and Technical Pier | ixing in post
clause 200
Specificati
36 | ition true to
05 of MoRTI
ons.
63.000 | ng Orgaline and level specification 22.000 | @ Rs 9970.6 anisatio vel elastome ons comple 6.100 Tota stal Deducte | 65 / metre OS Peric bearing Seric bearing A particular of the including includ | Rs 674 conforming all accesso 304365.60 1 50727.601 355093.20 0.000 Cun | to IRC: 83 pries as pe | | 30 | Supplying, fitting and f (Part-II) section IX and drawing and Technical Pier | ixing in post clause 200 Specificati 36 | ition true to 05 of MoRTHons. 63.000 | line and level specification 22.000 | @ Rs 9970.6 anisatio vel elastome ons comple 6.100 Tota stal Deducte Net Tota | 65 / metre 11 Seric bearing the including al Quantity downtity al Quantity | Rs 674 conforming all accessor 304365.60 1 50727.601 355093.20 0.000 Cun 355093.20 | to IRC: 8 pries as pe | | | Supplying, fitting and f (Part-II) section IX and drawing and Technical Pier Abutments | ixing in post clause 200 Specificati 36 | ition true to
05 of MoRTI
ons.
63.000 | line and level specification 22.000 | @ Rs 9970.6 anisatio vel elastome ons comple 6.100 Tota stal Deducte Net Tota | 65 / metre 11 Seric bearing the including al Quantity downtity al Quantity | Rs 674 conforming all accesso 304365.60 1 50727.601 355093.20 0.000 Cun 355093.20 | to IRC: 8: pries as pe | | 30 | Supplying, fitting and f (Part-II) section IX and drawing and Technical Pier | ixing in post clause 200 Specificati 36 6 Signification of the specification specific | ition true to 05 of MoRThons. 63.000 63.000 ay 355093.2 400x185x7. le driving un | line and level specification 22.000 22.000 To 02 Cum cm 5/8.5 driving it and all according to the control of th | @ Rs 9970.6 anisatio vel elastome ons comple 6.100 Tota tal Deducte Net Tota @ Rs 0.88 | al Quantity d Quantity d Quantity call Quantity / Cum cm | Rs 674 conforming all accessor 304365.60 1 50727.601 355093.20 0.000 Cun 355093.20 Rs 312 and levels labour hire of | to IRC: 8: pries as per 2 Cum cm 2 Cum cm 2482.02 interlocking tharges etc. | | | Supplying, fitting and f (Part-II) section IX and drawing and Technical Pier Abutments od105148/2019_2020 Providing Z steel sheet with adjacent piles with | ixing in post clause 200 Specificati 36 6 Signification of the specification specific | ition true to 05 of MoRThons. 63.000 63.000 ay 355093.2 400x185x7. le driving un | line and level specification 22.000 22.000 To 02 Cum cm 5/8.5 driving it and all according to the control of th | @ Rs 9970.6 anisatio vel elastome ons comple 6.100 Tota tal Deducte Net Tota @ Rs 0.88 | al Quantity d Quantity d Quantity call Quantity / Cum cm | Rs 674 conforming all accessor 304365.60 1 50727.601 355093.20 0.000 Cun 355093.20 Rs 312 and levels labour hire of | to IRC: 8: pries as per 2 Cum cm 2 Cum cm 2482.02 interlocking tharges etc. | | | Supplying, fitting and f (Part-II) section IX and drawing and Technical Pier Abutments od105148/2019_2020 Providing Z steel sheet with adjacent piles with | sixing in post clause 200 Specificati 36 6 Significations of the pile of size is suitable pile of size is directions. | ition true to 05 of MoRThons. 63.000 63.000 ay 355093.2 400x185x7. le driving units of departm | line and level specification 22.000 22.000 To 02 Cum cm 5/8.5 driving it and all according to the control of th | @ Rs 9970.6 anisatio vel elastome ons comple 6.100 Tota tal Deducte Net Tota @ Rs 0.88 g down verti cessories ir s at site. as | al Quantity d Quantity d Quantity call Quantity / Cum cm | Rs 674 conforming all accessor 304365.60 1 50727.601 355093.20 0.000 Cun 355093.20 Rs 312 s and levels labour hire of | to IRC: 83 pries as pe | | | | | | | Tota | al Quantity | 2826.000 | sqm | |----|--|--------------|--------------|--------------|---------------------------|-------------|-----------|------------------| | | | | | To | tal Deducte | d Quantity | 0.000 sqm | 1 | | | | | | | Net Tota | al Quantity | 2826.000 | sqm | | | | | Say 282 | 6.000 sqm | @ Rs 15772 | 2.41 / sqm | Rs 4457 | ′ 2830.66 | | 32 | od105150/2019_2020
Cathodic protection to s | heet piles i | ncluding all | cost, convey | yance etc. co | omplete | > | | | | | 2826 | | | | 0.12 | 339.120 | | | | | | | | Tota | al Quantity | 339.120 M | 1T | | | | | | To | otal Deducte | d Quantity | 0.000 MT | | | | | | | 1000 | Net Tota | al Quantity | 339.120 M | 1T | | | | | Sa | ıy 339.120 N | ИТ @ Rs 49 | 5.00 / MT | Rs 167 | ' 864.40 | | 33 | 14.9 Drainage Spouts compl | ete as per o | drawing and | Technical s | pecification | | | | | | | [] | 6 | nos per spa | an | | T | | | | | 7 | 6.000 | PLI | 13 | h | 42.000 | | | | | 16/4- | Ma | For Y | Tota | al Quantity | 42.000 no | | | | | | West | To | otal Deducte | d Quantity | 0.000 no | | | | | ther Er | oinoori | na Oras | | al Quantity | 42.000 no | | | | | ther En | igniceri | Say 42.000 r | an 15 at 10
no @ Rs 45 | 13.00 / no | Rs 189 | 546.00 | | 34 | 14.16 Providing and applying cleaning the surface of | | | | | | | | | | Semi Circular Portion | 5*2 | 3.14*2.0 | | 14.119 | | 886.674 | | | | | 5*2 | 2.000 | | 19.850 | | 397.000 | | | | | 5*2*2 | 0.600 | | 19.850 | | 238.200 | | | | Lock Pier | 1 | 25.800 | | 9.200 | | 237.360 | | | | | 1 | 23.800 | | 4.980 | | 118.525 | | | | | 1 | 8.000 | | 5.670 | | 45.360 | | | | | 1 | 2.000 | 2.000 | | | 4.000 | | | | | 1 | 9.900 | 1.000 | | | 9.900 | | | | Lock walls -u/s & d/s | 2 | 11.425 | | 9.200 | | 210.220 | | | | of lock pier | | l | | | | | | | | of lock pier | 2 | 11.425 | | 9.200 | | 210.220 | | | SI No | Description | No 2 A mmon | ndix B- Banl | B
Is Droto etio | n Warks | CF | Quantity | Remark | |-------|----------------------------------|-------------|----------------|--------------------|--|-------------|-------------------|---------| | | | | | | m @ Rs 210 | | | 9967.42 | | | | | | | Net Tota | al Quantity | 7404.440 | sqm | | | | | | Тс | otal Deducte | d Quantity | 0.000 sqn | ı | | | | | | | Tota | al Quantity | 7404.440 | sqm | | | L.S for hand rail 1No =250 m2 | 2 | | | | 250.0 | 500.000 | | | | Rt | 1 | 12.000 | | 11.119 | | 133.428 | | | | | 1 | 6.400 | | 4.020 | | 25.728 | | | | Lt | 1 | 12.000 | | 16.119 | | 193.428 | | | | | Abutme | ent Rt,Lt and | Extented p | ortion of Ab | utment | | | | | Beam Sides | 3*2 | 97.600 | | 1.360 | { | 796.416 | | | | Slab Bottom | 1 | 97.600 | | 8.450 | | 824.720 | | | | Cross Beam | +11*7*3*2 | 2.200 | ng Org | 1.060 | ne | 97.945 | | | | | | eck Slab bo | 1000 | LONG TO SERVICE STATE OF THE PERSON T | n | | | | | Circular Column | 6 | 3.140 | 1.700 | 12.819 | | 410.567 | | | | Brazing | 5 | 5.050 | 100 | 1.600 | 4 | 40.400 | | | | ι οπ σαρ(τορ) | 5 | 7.900 | 37/1 | 2.000 | | 79.000 | | | | Peir Cap(Top) | 5 | 17.800 | | 1.300 | | 115.700 | | | | | 2 | 1.200 | | 6.200 | | 14.880 | | | | | 2 | 11.425 | P. | 6.200 | | 141.671 | | | | | 2 | 9.325
1.200 | | 6.200
6.200 | | 115.630
14.880 | | | | | 2 | 5.250 | | 6.200 | | 65.101 | | | | | 2 | 14.250 | | 6.200 | | 176.701 | | | | | 2*2 | 0.800 | | 6.200 | | 19.841 | | | | | 2 | 1.500 | | 6.200 | | 18.600 | | | | | 2*2 |
3.000 | | 6.200 | | 74.400 | | | | | 2 | 21.000 | | 6.200 | | 260.401 | | | | u/s & d/s of left side lock wall | 2 | 44.410 | | 9.200 | | 817.144 | | | | od105109/2019_2020
Earth work in excav
exceeding 30 cm in d | ation by me
epth, includir | ng disposal o | of excavate | | • | | | |---|--|--|---|---|---|---|---|--| | | be levelled and neatly | dressed.All | | t wall rtand l | lt hank | | | | | | Lt andR bank d/s | 2 | 50.000 | 2.000 | 2.000 | | 400.000 | | | | Rt bank u/s | 1 | 150.000 | 2.000 | 1.500 | | 450.000 | | | | Lt banku/s | 1 | 50.000 | 2.000 | 1.500 | | 150.000 | | | | | | RCC Rt | wall Lt and | rt banks | , | 1 | | | | Lt bank d/s and u/s | 2 | 50.000 | 2.000 | 4.000 | | 800.000 | | | | Rt bank d/s and u/s | 2 | 50.000 | 2.000 | 3.000 | | 600.000 | | | | | | 190 | | Tota | al Quantity | 2400.000 | cum | | | | - | | To | otal Deducte | d Quantity | 0.000 cum | า | | | | 610 | W. B | 34/ | Net Tota | al Quantity | 2400.000 | cum | | | | B | Say 2 | 400.000 cu | m @ Rs 175 | 5.14 / cum | Rs 420 | 0336.00 | | | empty gunny/polyther | • | with earth | placed in 2 | rows at 0.6 | im apart an | d filled in be | etween wi | | | empty gunny/polyther puddle clay to form l completion of the wo | bund for an | d with earth
average he | placed in 2
eight 2.00m | rows at 0.6 including l | 6m apart an
abour dism | d filled in be | | | | puddle clay to form l | bund for an | d with earth
average he | placed in 2
eight 2.00m | rows at 0.6 including l | 6m apart an
abour dism | d filled in be | etween wi | | | puddle clay to form l
completion of the wo | bund for an ork etc. com | d with earth
average he
plete, as pe | placed in 2
eight 2.00m | rows at 0.6 including l | 6m apart an
abour dism | d filled in benantling the | etween wi | | | puddle clay to form loompletion of the work Lt bank us and ds Right bank ds | bund for an ork etc. com | with earth
average he
plete. as pe
100.000 | placed in 2
eight 2.00m | rows at 0.6 including l | 6m apart an
abour dism | d filled in benantling the | etween wi | | | puddle clay to form I completion of the wo | bund for an ork etc. com 2 1 | with earth average he plete. as per 100.000 100.000 200.000 | placed in 2
eight 2.00m | rows at 0.6
including l | 6m apart an
abour dism | 200.000
100.000
200.000 | etween wi | | | puddle clay to form I completion of the wo | bund for an ork etc. com 2 1 | with earth average he plete. as per 100.000 100.000 200.000 | placed in 2
eight 2.00m
er 60.1.1 O | rows at 0.6
including l | abour dism | 200.000
100.000
100.000 | etween wi
bund aft | | | puddle clay to form I completion of the wo | bund for an ork etc. com 2 1 | with earth average he plete. as per 100.000 100.000 200.000 | placed in 2
eight 2.00m
er 60.1.1 O | Total Deducte | abour dism | 200.000
100.000
200.000
100.000
600.000 n | etween wi
bund aft
netre | | | puddle clay to form I completion of the wo | bund for an ork etc. com 2 1 | 1 with earth average he plete. as pe 100.000 100.000 200.000 50.000 | placed in 2
sight 2.00m
or 60.1.1 Q | Total Deducte | an apart an abour dismans al Quantity d Quantity al Quantity | 200.000 100.000 200.000 100.000 0.000 met 600.000 m | etween wide bund aft bund aft | | 3 | puddle clay to form I completion of the wo | bund for an ork etc. com 2 1 1 2 sing 5HP Pu | with earth average he plete. as per 100.000 100.000 200.000 50.000 Say 600. | placed in 2 sight 2.00m or 60.1.1 O | Total Deducte Net Total Rs 1315.0 | al Quantity al Quantity al Quantity al Quantity engine an | 200.000 100.000 200.000 100.000 0.000 met 600.000 m Rs 789 | netre netre netre netre | | 3 | puddle clay to form I completion of the would be and ds Right bank ds Right bank us Thodu us od151630/2019_2020 Bailing out water Us | bund for an ork etc. com 2 1 1 2 sing 5HP Pu | say 600. | placed in 2 sight 2.00m or 60.1.1 O | Total Deducte Net Total Rs 1315.0 | al Quantity al Quantity al Quantity al Quantity engine an | 200.000 100.000 200.000 100.000 0.000 met 600.000 m Rs 789 | netre netre netre netre | | 3 | puddle clay to form I completion of the would be and ds Right bank ds Right bank us Thodu us od151630/2019_2020 Bailing out water Us | bund for an ork etc. com 2 1 1 2 sing 5HP Pu | say 600. | placed in 2 sight 2.00m of 60.1.1 O To Ooo metre g out wate lubrication | Total Deducte Net Total Rs 1315.0 | al Quantity al Quantity al Quantity al Quantity engine an | 200.000 100.000 200.000 100.000 0.000 met 600.000 m Rs 789 | netre netre netre netre | | 3 | puddle clay to form I completion of the would be and ds Right bank ds Right bank us Thodu us od151630/2019_2020 Bailing out water Us | bund for an 2 1 1 1 2 2 sing 5HP Pund erection, compared to the th | say 600. | placed in 2 sight 2.00m of 60.1.1 O To Ooo metre g out wate lubrication | Total Deducte Net Total @ Rs 1315.0 er with 5HP oil and other 8 hours | al Quantity al Quantity al Quantity al Quantity engine an | 200.000 100.000 200.000 100.000 100.000 600.000 met 600.000 m Rs 789 and pump see any of staff et | netre netre netre out includir | | 3 | puddle clay to form I completion of the would be and ds Right bank ds Right bank us Thodu us od151630/2019_2020 Bailing out water Us | bund for an 2 1 1 1 2 2 sing 5HP Pund erection, compared to the th | say 600. | placed in 2 sight 2.00m of 60.1.1 O | Total Deducte Net Total @ Rs 1315.0 er with 5HP oil and other 8 hours | al Quantity al Quantity al Quantity engine and er stores, par | 200.000 100.000 200.000 100.000 100.000 600.000 met 600.000 m Rs 789 nd pump seay of staff et | netre netre netre netre netre netre not includinc comple | | | | | Say 1 | 280.000 hou | ır @ Rs 232 | .74 / hour | Rs 297 | 907.20 | |---|---|----------------|--------------|----------------|---------------------------|--------------|-----------------------|--------------| | 4 | od118247/2019_2020 Bailing out water using above 5HP and up to other stores, pay of st | 10HP, inclu | ding conve | yance to sit | e and erect | | _ | | | | | | 1 pu | ımp 40 days | 8hrs | | | | | | | 1*40*8 | | | | | 320.000 | | | | | | | | Tota | al Quantity | 320.000 h | our | | | | | | To | tal Deducte | d Quantity | 0.000 hou | r | | | | | | | Net Tota | al Quantity | 320.000 h | our | | | | | Say | 320.000 hou | ır @ Rs 317 | .74 / hour | Rs 101 | 676.80 | | | strata bellow bed lev | el including | A S | | 441 | etc comple | ete as per 6 | 0.64.1 OI | | | | 1/5 | 15/70 | nder rcc ret w | /all | L | | | | | Lt bank us and ds | 2*4*51 | 3.500 | 27377s | | | 1428.000 | | | | Rt bank us and ds | 2*4*51 | 3.000 | in bl. 1227 | | | 1224.000 | | | | | ther En | gineeri | Under cc wa | "
anisatic | ns | | | | | Lt and rt bank ds | 2*50*3 | 3.500 | | | 7 | 1050.000 | | | | Lt and rt bank us | 200*3 | 3.000 | | | 16 | 1800.000 | | | | - | | | To | | al Quantity | 5502.000 | | | | | | | 10 | tal Deducte | al Quantity | 0.000 met
5502.000 | | | | | | Say 550 | 2.000 metre | | | | 1295.54 | | 6 | od118250/2019_2020
Coconut Pile - Driving
charges and labour fo
after pointing the botto | r fixing , sta | onut pile to | lines and le | evels througher appliance | gh variuos s | strata includ | ing all hire | | | | | ι | under CC wa | II | | I |
| | | Rt and It bank ds | 2*50*3 | 3.500 | | | | 1050.000 | | | | Rt and left bank us | 200*3 | 3.000 | | | | 1800.000 | | | | | | Ur | nder rcc ret v | vall | Γ | T | | | | | 0.4.7.4.4 | 0.500 | | | | | | | | Lt bank us and ds | 2*51*4 | 3.500 | | | | 1428.000 | | | | | | | | Tota | al Quantity | 5502.000 | metre | |---|--|--|---|---|---|-------------|---|------------| | | | | | To | otal Deducte | • | 0.000 met | | | | | | | | | al Quantity | 5502.000 | | | | | | Say 5502 | 2 000 metre | @ Rs 798.3 | - | | 2631.74 | | 7 | od118251/2019_2020 DR PACKING Under for including conveyance officers at site as per formal conveyance. | of materia | l and labour | _ | | • | | | | | | | und | er RCC ret | wall | | | | | | Lt bank us and ds | 2 | 50.000 | 4.200 | 0.600 | | 252.000 | | | | Rt bank us and ds | 2 | 50.000 | 4.200 | 0.600 | | 252.000 | | | | | | M | ınder cc wa | II | | | | | | Lt bank us and ds | 2 | 50.000 | 3.000 | 0.600 | | 180.000 | | | | Rt bank us | 150 | 3.000 | 1.000 | 0.600 | | 270.000 | | | | rt bank ds | | 50.000 | 3.000 | 0.600 | | 90.000 | | | | For side thodu | 2 | 50.000 | 3.000 | 0.600 | | 180.000 | | | | | | | | Tota | al Quantity | 1224.000 | cum | | | | | THE RESE | To | otal Deducte | d Quantity | 0.000 cum | 1 | | | 0 | ther En | ngineeri | ng Org | an Net Tota | al Quantity | 1224.000 | cum | | | 1 | | Say 12 | 24.000 cum | @ Rs 2201 | .73 / cum | Rs 269 | 4917.52 | | 0 | od143003/2019_2020 | | | | | 1 | | | | 8 | Plain cement concrete 40 mm nominal size m curing for 14 days as p | echanicall | y mixed, pla | ced in four | _ | | | | | | Plain cement concrete 40 mm nominal size m | echanicall | y mixed, pla
IORTH Spec | ced in four | ndation and | | | | | | Plain cement concrete 40 mm nominal size m | echanicall | y mixed, pla
IORTH Spec | iced in four
dification | ndation and | | | | | | Plain cement concrete 40 mm nominal size m curing for 14 days as p | echanicall
per 12.4 M | y mixed, pla
IORTH Spec
Le | ced in four
dification
velling cour | ndation and | | l by vibratio | | | | Plain cement concrete 40 mm nominal size m curing for 14 days as processed for RCC wall it and rt bank us and ds For rcc wall left bank | echanicall
per 12.4 M
2*2 | y mixed, pla
IORTH Spec
Le
50.000 | iced in four
dification
velling cour
4.200 | ndation and | | 126.000 | ••• | | | Plain cement concrete 40 mm nominal size m curing for 14 days as provided from the curing cur | echanicall
per 12.4 M
2*2
1*2 | y mixed, pla
IORTH Spec
Le
50.000 | velling cour
4.200 | 0.150 | | 126.000
37.500 | ••• | | | Plain cement concrete 40 mm nominal size m curing for 14 days as provided from the curing cur | echanicalloer 12.4 M 2*2 1*2 | y mixed, pla
IORTH Spec
Le
50.000
50.000 | velling cour 4.200 2.500 | 0.150
0.150 | | 126.000
37.500
18.750 | | | | Plain cement concrete 40 mm nominal size m curing for 14 days as provided from the curing for 15 days and | echanicalloer 12.4 M 2*2 1*2 1 | y mixed, pla
IORTH Spec
Le
50.000
50.000
150.000 | velling cour 4.200 2.500 2.500 | 0.150
0.150
0.150
0.150
0.150 | | 126.000
37.500
18.750
56.250 | n includi | | | Plain cement concrete 40 mm nominal size m curing for 14 days as provided from the curing for 15 days and | echanicalloer 12.4 M 2*2 1*2 1 | y mixed, pla
IORTH Spec
Le
50.000
50.000
150.000 | velling cour 4.200 2.500 2.500 2.500 2.500 | 0.150
0.150
0.150
0.150
0.150 | compacted | 126.000
37.500
18.750
56.250
37.500 | n includir | | | | | Say 2 | 276.000 cum | @ Rs 6740 |).87 / cum | Rs 186 | 0480.12 | |----|--|-----------|--------------------|--------------|-------------------|-------------|------------|-----------------------| | 9 | 12.8.E.2.1 Plain/Reinforced Cem Specifications. RCC Grade M25 - With | | · | | · | · | rawing and | Technic | | | | | Fou | ındation rcc | wall | | | | | | Base slab rcc wall rt bank us and ds | 2 | 50.000 | 4.000 | 0.600 | | 240.000 | | | | Lt bank ds and us | 2 | 50.000 | 4.000 | 0.600 | | 240.000 | | | | | | | | Tota | al Quantity | 480.000 c | um | | | | | 5-2 | To | tal Deducte | d Quantity | 0.000 cum | 1 | | | | | 160 | 1638 | Net Tota | al Quantity | 480.000 c | um | | | | | Sav 4 | 180.000 cum | | | | 5548.80 | | | Plain/Reinforced cemen
RCC Grade M25 - With | | Plant, Transit | Mixer and (| Concrete Pu | _ | - | ecificatio | | | B | | Burga St. | RCC Ret wa | Days Land | | 400.750 | | | | Rt bank us and ds | 2 | 50.000 | (.6+.3)/2 | 4.150 | | 186.750 | | | | Lt bank us and ds | ther Er | 50.000
ngineeri | (.65+.3)/2 | 4.650
anisatio | ns | 220.876 | | | | | | | | 7 | al Quantity | 407.626 c | | | | | | | 10 | otal Deducte | 1 | 0.000 cum | | | | | | | | | al Quantity | 407.626 c | | | 11 | 12.8.A.1 Plain/Reinforced Cem Specifications. PCC Grade M15 | ent Concr | • | 107.626 cum | | | | 9461.99 Techni | | | | | | CC wall | | | | | | | D/s Rt and Lt foundation | 2*50 | 2.200 | 0.600 | | | 132.000 | | | | Lt bankus foundation | 1*50 | 2.000 | 0.600 | | | 60.000 | | | | Us right bank
foundation | 1*150 | 2.000 | 0.600 | | | 180.000 | | | | | | | | | | | | | | Thodu CC wall foundation | 2 | 50.000 | 2.000 | 0.600 | | 120.000 | | | | | | | To | otal Deducte | d Quantity | 0.000 cum | า | |----|--|------------|----------------|------------|---------------|-------------|--------------|------------| | | | | | | Net Tota | al Quantity | 492.000 c | um | | | | | Say 49 | 92.000 cum | n @ Rs 7504 | 1.48 / cum | Rs 369 | 2204.16 | | 12 | od114774/2019_2020 Supply, Fitting and Pla Reinforcement in Found MORTH specification< | dation com | • | - | • | | , | | | | RCC M25 | 1 | 480.000 | | | 0.17 | 81.601 | | | | PCC M15 | 1 | 492.000 | | | 0.04 | 19.680 | | | | | | | | Tota | al Quantity | 101.281 N | ΛΤ | | | | | 0 | To | otal Deducte | d Quantity | 0.000 MT | | | | | | JANS | 199 | Net Tota | al Quantity | 101.281 N | ИT | | | | - | Say 1 | 01.281 MT | @ Rs 9156 | 66.73 / MT | Rs 927 | 3969.98 | | | Plain/Reinforced cemer
PCC Grade M15 - Heig | | in sub-structu | | te as per dra | awing and T | echnical Spe | ecificatio | | | | | | CC wall | A | 2 | | | | | D/S Rt and Lt bank wall | 2*50 | (2+.6)/2 | 4.000 | | | 520.000 | | | | Us Lt bank wall | ther Er | (1.75+.6)/ | 1g Org. | anisatic | ns | 205.625 | | | | Us Rt bank wall | 1*150 | (1.75+.6)/ | 3.500 | | | 616.875 | | | | Side thodu | 2*50 | (1.75+.6)/ | 3.500 | | | 411.250 | | | | | То | p belt over R | R masonry | Rt and Lt b | ank | 1 | ı | | | Ds | 2 | 500.000 | 0.600 | 0.075 | | 45.000 | | | | Us | 1 | 1400.000 | 0.600 | 0.075 | | 63.000 | | | | Thodu | 2 | 400.000 | 0.600 | 0.075 | | 36.000 | | | | | | | | Tota | al Quantity | 1897.750 | cum | | | | | | To | otal Deducte | d Quantity | 0.000 cum | า | | | | | | | Net Tota | al Quantity | 1897.750 | cum | | | | | Say 189 | 97.750 cum | n @ Rs 7937 | 7.43 / cum | Rs 1506 | 63257.78 | | 14 | od105133/2019_2020
Supply, Fitting and Pla
Reinforcement in subst | • | • | - | • | | , | | | | MORTH specification | ons <br< th=""><th></th><th><u> </u></th><th></th><th>1</th><th></th><th></th></br<> | | <u> </u> | | 1 | | | |----|---|--
--|--|--|---|---|------------------------| | | RCC M25 | 407.626 | | | | 0.17 | 69.297 | | | | PCC M15 | 1753.75 | | | | 0.04 | 70.150 | | | | | | | | Tota | al Quantity | 139.447 N | 1T | | | | | | To | otal Deducte | d Quantity | 0.000 MT | | | | | | | | Net Tota | al Quantity | 139.447 N | 1T | | | | | Say ² | 139.447 MT | @ Rs 9184 | 2.80 / MT | Rs 1280 | 7202.93 | | 15 | od117846/2019_20 Supplying and stace stone 20 to 45 dm3 (deducting not less conveyance, loading as per the direction | king granite sto
in size (60% 4
s than 15% for
ng and unloadin | 5m3,30%30
voids as fix
g charges a | to 40dm3 a
ked by the
Ill other inci | and 10% 20
department
dental charc | to 30dm3 st
al officer at
ges all leads | cones) for me
site) includi
s and lifts etc | easurem | | | do per trie direction | Tor the departi | icital office | Side thodu | 1 | OD IIIIgallo | | | | | Lt and Rt bank | 2 | 400.000 | 3.970 | | | 3176.000 | | | | Lt bank us | 1 | 750.000 | 12.284 | Ta | | 9213.000 | | | | Lt bank ds | 1 | 500.000 | 11.944 | | £ | 5972.000 | | | | Rt bank us | 1 | 650.000 | 12.284 | 5/2 | | 7984.600 | | | | Rt bankds | . 1 - | 500.000 | 11.640 | | | 5820.000 | | | | | Other Er | igineeri. | n 0 1 100 | | ns
al Quantity | 32165.600 | cum | | | | Di | | To | otal Deducte | 1 | 0.000 cum | | | | | | | | | al Quantity | 32165.600 | | | | | | Sav 321 | 65.600 cum | n @ Rs 1786 | | Rs 5745 | | | 16 | od118660/2019 20 | 20 | , | | | | 1 110 01 10 | | | | Conveyance and d to 45 dm3 in size fr 30dm3 stones) to li and lifts etc. comple | umping of depa
om stack at site
nes and levels
ete as per the c | e and dumping to from the building the lirection of l | ng in position | on (60% 45n
wall as per | n3,30%30 to
approved de | o 40dm3 and
esign includio
per 60.7.7 O | l 10% 20
ng all lea | | | | 1 | 32165.600 | | _ | | 32165.600 | | | | | | | _ | | al Quantity | 32165.600 | | | | | | | To | otal Deducte | | 0.000 cum | | | | | | | | | al Quantity | 32165.600 | | | | | | Say 32 | 165.600 cu | m @ Rs 446 | 5.89 / cum | Rs 1437 | 4484.98 | | 17 | od118718/2019_20
DRY RUBBLE MA
blasted rubble inclu | SONRY _ Dry | | | _ | | | • | | | labour charges etc. cor | nplete as pe | er direction o | of Departmer | ntal officers | at site as pe | er 60.7.1 OD | Irrigation | |----|---|--------------|----------------|-----------------|---------------|---------------|--------------|------------| | | | | F | Rt and It ban | k | Г | T | | | | D/s | 2 | 500.000 | (1.2+.75)/
2 | 1.500 | | 1462.500 | | | | Us | 1 | 1400.000 | (1.2+.75)/
2 | 1.500 | | 2047.500 | | | | thodu | 2 | 400.000 | (1.2+.75)/ | 1.500 | | 1170.000 | | | | | | | | Tota | al Quantity | 4680.000 | cum | | | | | | То | tal Deducte | d Quantity | 0.000 cum | 1 | | | | | 0 | -61 | Net Tota | al Quantity | 4680.000 | cum | | | | | Say 46 | 80.000 cum | @ Rs 2858 | 3.69 / cum | Rs 1337 | 78669.20 | | | including leveling up wi
20 mm nominal size)
coarse sand) | | sills, ceiling | | ne like. | | = | | | | D/s | 2 | 500.000 | (.75+.6)/2 | 0.500 | | 337.500 | | | | U/s | ther En | 1400.000 | (.75+.6)/2 | ano.50010 | ns | 472.501 | | | | Thodu | 2 | 400.000 | (.75+.6)/2 | 0.500 | 7 | 270.000 | | | | | P = 1 | | | Tota | al Quantity | 1080.001 | cum | | | | | | То | tal Deducte | d Quantity | 0.000 cum | 1 | | | | | | | Net Tota | al Quantity | 1080.001 | cum | | | | | Say 10 | 80.001 cum | @ Rs 5322 | 2.16 / cum | Rs 574 | 7938.12 | | 19 | 3.17 Construction of emba excavation from drain table 300-2. | | | | • | | • | _ | | | | | Brea | ched bank p | ortion | T | | Г | | | D/s | 2 | 600.000 | 1.500 | 0.850 | | 1530.000 | | | | Us | 2 | 850.000 | 1.500 | 0.850 | | 2167.500 | | | | | | | | Tota | al Quantity | 3697.500 | cum | | | | | | То | tal Deducte | d Quantity | 0.000 cum | ı | | | | | | | Net Tota | al Quantity | 3697.500 | cum | | | | | Sav | 3697.500 cu | ım @ Rs 97 | 7.73 / cum | Rs 361 | 356 68 | | 20 | od143136/2019_2020
PVC WEEP HOLES- F | roviding w | reep holes ι | ısing 75mm | dia. PVC p | ipes workir | ig pressure | 4kg /sq.c | |-------|--|---------------|---------------|-----------------|---------------|--------------|-----------------|-----------| | | including cost of mater | ials, conve | yance, labo | our charges | etc. comple | ete. | | T | | | Rt bank river and thodu | 1 | 260.000 | | | | 260.000 | | | | Lt bank river and thodu | 1 | 200.000 | | | | 200.000 | | | | | | • | | Tota | al Quantity | 460.000 n | netre | | | | | | To | tal Deducte | d Quantity | 0.000 met | re | | | | | | | Net Tota | al Quantity | 460.000 n | netre | | | | | Say 46 | 0.000 metre | @ Rs 127.4 | 44 / metre | Rs 58 | 622.40 | | SI No | Description | No | L/(SI | В | D | CF | Quantity | Remark | | | | 3 A | PPENDIX-C | ROAD WO | RKS | | | | | | Earth work in excavati exceeding 30 cm in dep to be levelled and neatl | oth, includir | ng disposal d | of excavated | l earth, with | all lead and | l lift, dispose | | | | 2 | 4 | Left bank R | et wall Cher | uvannur side | Э | | | | | CF Ret wall | 2 | 30.000 | 4.800 | 1.900 | | 547.200 | | | | RCC cantilever Ret | thez Er | g50.000°1 | (4.2+3.7)/
2 | ani.906io | ns | 750.500 | | | | CC Wall | 2 | 40.000 | (1.2+.8)/2 | 1.500 | | 120.000 | | | | | | RB R | et wall velor | n side | | | | | | CF ret wall | 2 | 30.000 | 6.000 | 1.900 | | 684.000 | | | | RCC ret wall | 2 | 50.000 | (4.8+4.2)/ | 1.900 | | 855.000 | | | | CC wall | 2 | 60.000 | (1.6+.8)/2 | 1.500 | | 216.001 | | | - | | | Found | dation Gauro | I stone | | | | | | Lt bank | 2*60 | 0.400 | 0.400 | 0.300 | | 5.761 | | | | Rt bank | 2*70 | 0.400 | 0.400 | 0.300 | | 6.721 | | | | | | | | Tota | al Quantity | 3185.183 | cum | | | | | | To | tal Deducte | d Quantity | 0.000 cum | 1 | | | | | | | Net Tota | al Quantity | 3185.183 | cum | | | | | Say 3 | 3185.183 cui | m @ Rs 175 | 5.14 / cum | Rs 557 | 7852.95 | | 2 | 3.16 Construction of emban | kment with | a approved | material obt | ained from | horrow nite | with all lifts | and loo | | | | | Extra | for curved p | ortion | _ | | | |---
--|--|--|--|--|---------------------------|---|---------------| | | Lt and Rt bank | 2 | 20.000 | 3.000 | 2.000 | | 240.000 | | | | | | Ch | eruvannur s | de | | | | | | Lt bank | 1 | 120.000 | 6.700 | 5.75/2 | | 2311.500 | | | | | | | Velom side | | | | | | | | 1 | 140.000 | 6.700 | 6.85/2 | | 3212.650 | | | | | | | Deduction | | | | | | | Deduct qnty vide item | 1 | 3185.183 | en en | | | -3185.183 | | | | | | -//W | 31/2 | Tot | al Quantity | 5764.150 | cum | | | | | 14.3° () | То | tal Deducte | ed Quantity | -3185.183 | cum | | | | 11 | "NO BE | 57/1 | Net Tot | al Quantity | 2578.967 | cum | | | | 100 | ALCONO. | 2018 5 1 | 0.5.44 | 2.04 / | D- 400 | F700 (| | 3 | od118251/2019_2020 DR PACKING Under for including conveyance officers at site as per formal control of the cont | of materi | - Dry stone pal and labour | charges et | er foundation c. complet | on with goo | | sted ru | | 3 | DR PACKING Under for including conveyance | of materi | - Dry stone pal and labour | packing under charges et | er foundation c. complet | on with goo | d quality bla | sted ru | | 3 | DR PACKING Under for including conveyance | of materi | - Dry stone pal and labour | packing under charges et | er foundation c. complet | on with goo | d quality bla | sted ru | | 3 | DR PACKING Under for including conveyance officers at site as per | of materi | - Dry stone pal and labour Differentiation Right | packing under charges et one of the organization organizati | er foundation. complete | on with goo | d quality bla | sted ru | | 3 | DR PACKING Under for including conveyance officers at site as per CCF | of materi
60.7.2 OI
ther | - Dry stone pal and labour Dirrigation Right | charges et bank Velom 6.000 (4.8+4.2)/ | er foundation. complete comple | on with goo | d quality bla
ection of de
180.000 | sted ru | | 3 | DR PACKING Under for including conveyance officers at site as per CCF RCC cantilever RW | of materia | - Dry stone pal and labour Dirrigation Right 30.000 50.000 | charges et bank Velom 6.000 (4.8+4.2)/2 | er foundation. complet anisation side 0.500 0.500 0.500 | on with goo | d quality bla
ection of de
180.000
225.000 | sted ru | | 3 | DR PACKING Under for including conveyance officers at site as per CCF RCC cantilever RW | of materia | - Dry stone pal and labour Dirrigation Right 30.000 50.000 | charges et bank Velom 6.000 (4.8+4.2)/2 | er foundation. complet anisation side 0.500 0.500 0.500 | on with goo | d quality bla
ection of de
180.000
225.000 | sted ru | | 3 | DR PACKING Under for including conveyance officers at site as per CCF RCC cantilever RW CC RW | of materi
60.7.2 OI
there | - Dry stone pal and labour Dirrigation Right 30.000 50.000 Lt bank | charges et bank Velom 6.000 (4.8+4.2)/2 (1.6+.8)/2 | er foundation. complet anisation side 0.500 0.500 ur side | on with goo | 180.000
225.000
72.001 | sted ru | | 3 | DR PACKING Under for including conveyance officers at site as per CCF RCC cantilever RW CC RW | of materia
60.7.2 OI
there | - Dry stone pal and labour Dirrigation Right 30.000 60.000 Lt band 30.000 | charges et | or foundation c. complet compl | on with goo | 180.000
225.000
72.001 | sted ru | | 3 | DR PACKING Under for including conveyance officers at site as per CF RCC cantilever RW CC RW CF RCC Ret wall | of materia
60.7.2 OI
10.7.2
2
2
2 | - Dry stone pal and labour Dirrigation Right 30.000 - 50.000 - Lt band 30.000 - 50.000 | charges et | 0.500 0.500 0.500 0.500 0.500 0.500 | on with goo | 180.000
225.000
72.001
144.000 | sted ru | | 3 | DR PACKING Under for including conveyance officers
at site as per CF RCC cantilever RW CC RW CF RCC Ret wall | of materia
60.7.2 OI
10.7.2
2
2
2 | - Dry stone pal and labour Dirrigation Right 30.000 - 50.000 - Lt band 30.000 - 50.000 | charges et bank Velom 6.000 (4.8+4.2)/ 2 (1.6+.8)/2 k cheruvann 4.800 (4.2+3.7)/ 2 (1.2+.8)/2 | or foundation c. complet compl | on with good e as per dir | 180.000
225.000
72.001
144.000
40.000 | sted ru | | 3 | DR PACKING Under for including conveyance officers at site as per CF RCC cantilever RW CC RW CF RCC Ret wall | of materia
60.7.2 OI
10.7.2
2
2
2 | - Dry stone pal and labour Dirrigation Right 30.000 - 50.000 - Lt band 30.000 - 50.000 | charges et bank Velom 6.000 (4.8+4.2)/ 2 (1.6+.8)/2 k cheruvann 4.800 (4.2+3.7)/ 2 (1.2+.8)/2 | or foundation c. complet compl | al Quantity | 180.000
180.000
225.000
72.001
144.000
40.000
858.501 c | sted ruepartm | | | | Le | evelling cours | e Lt bank Ch | neruvannur | side | | | |---|---|---------------|---|--|---|--|--|----------| | | CF (0 to 30m) | 2 | 30.000 | 4.800 | 0.150 | | 43.200 | | | | RCC Ret wall (30to 80m) | 2 | 50.000 | (4.2+3.7)/ | 0.150 | | 59.250 | | | | | | CC | wall founda | tion | | | | | | Lt bank | 2 | 40.000 | (1.2+.8)/2 | (0.6+.45)/ | | 42.000 | | | | Rt bank | 2 | 60.000 | (1.6+.8)/2 | (.6+.45)/2 | | 75.601 | | | | | | Righ | nt bank veom | side | | | | | | CF wall (0 to 30m) | 2 | 30.000 | 6.000 | 0.150 | | 54.000 | | | | RCC Cantilever rw | 2 | 50.000 | (4.8+4.2)/ | 0.150 | | 67.500 | | | | | 6 | W 12 | 25 N | Tota | al Quantity | 341.551 c | um | | | | R | 41/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/ | To | tal Deducte | d Quantity | 0.000 cum | า | | | 4 | 182 | L | | Net Tota | al Quantity | 341.551 c | um | | | 300 | APP-T- | 5 6 N N N | BS/10/ /3 | | | | | | 5 | 12.8.E.2.1 Plain/Reinforced Ceme | ent Conc | A A Print | 341.551 cum | | | | | | 5 | | - | crete in Ope | n Foundation | on complet | e as per D | | | | 5 | Plain/Reinforced Ceme
Specifications.
RCC Grade M25 - With E | Batching | Plant, Transi | n Foundation t Mixer and 0 t Bank Velon | on complet
Concrete Pu | e as per D | rawing and | | | 5 | Plain/Reinforced Ceme
Specifications.
RCC Grade M25 - With E | Batching
2 | Plant, Transi Righ | n Foundation t Mixer and 0 t Bank Velon 5.800 | Concrete Pun side | e as per D | 208.800 | | | 5 | Plain/Reinforced Ceme
Specifications.
RCC Grade M25 - With E | Batching | Plant, Transi Righ 30.000 50.000 | t Mixer and 0 t Bank Velon 5.800 (4.6+4)/2 | Concrete Pun side 0.600 0.600 | e as per D | rawing and | | | 5 | Plain/Reinforced Ceme
Specifications.
RCC Grade M25 - With E
CF wall 0-30m
RCC wall | Batching 2 | Plant, Transi Righ 30.000 50.000 Left Ba | t Mixer and 0 t Bank Velon 5.800 (4.6+4)/2 nk Cheruvan | Concrete Pun side 0.600 0.600 nur side | e as per D | 208.800
258.000 | | | 5 | Plain/Reinforced Ceme
Specifications.
RCC Grade M25 - With E
CF wall 0-30m
RCC wall | 2
2
2 | Plant, Transi Righ 30.000 50.000 Left Ba 30.000 | t Mixer and 0 t Bank Velon 5.800 (4.6+4)/2 nk Cheruvan 4.600 | Concrete Pun side 0.600 0.600 nur side 0.600 | e as per D | 208.800
258.000 | | | 5 | Plain/Reinforced Ceme
Specifications.
RCC Grade M25 - With E
CF wall 0-30m
RCC wall | Batching 2 | Plant, Transi Righ 30.000 50.000 Left Ba | t Mixer and 0 t Bank Velon 5.800 (4.6+4)/2 nk Cheruvan | Concrete Pun side 0.600 0.600 nur side 0.600 0.600 | e as per D | 208.800
258.000
165.600
225.000 | Techr | | 5 | Plain/Reinforced Ceme
Specifications.
RCC Grade M25 - With E
CF wall 0-30m
RCC wall | 2
2
2 | Plant, Transi Righ 30.000 50.000 Left Ba 30.000 | t Mixer and 0
t Bank Velon
5.800
(4.6+4)/2
nk Cheruvan
4.600
(4+3.5)/2 | Concrete Pun side 0.600 0.600 nur side 0.600 Tota | e as per D | 208.800
258.000
165.600
225.000
857.400 c | l Techr | | 5 | Plain/Reinforced Ceme
Specifications.
RCC Grade M25 - With E
CF wall 0-30m
RCC wall | 2
2
2 | Plant, Transi Righ 30.000 50.000 Left Ba 30.000 | t Mixer and 0
t Bank Velon
5.800
(4.6+4)/2
nk Cheruvan
4.600
(4+3.5)/2 | On complet Concrete Pu n side 0.600 0.600 nur side 0.600 Tota stal Deducte | e as per D mp al Quantity d Quantity | 208.800
258.000
165.600
225.000
857.400 c | l Techr | | 5 | Plain/Reinforced Ceme
Specifications.
RCC Grade M25 - With E
CF wall 0-30m
RCC wall | 2
2
2 | Plant, Transi Righ 30.000 50.000 Left Ba 30.000 | t Mixer and 0 t Bank Velon 5.800 (4.6+4)/2 nk Cheruvan 4.600 (4+3.5)/2 | On complet Concrete Pu n side 0.600 0.600 nur side 0.600 Tota stal Deducte Net Tota | e as per D mp al Quantity d Quantity al Quantity | 208.800
258.000
165.600
225.000
857.400 c
0.000 cum | um
um | | 5 | Plain/Reinforced Ceme
Specifications.
RCC Grade M25 - With E
CF wall 0-30m
RCC wall | 2
2
2 | Plant, Transi Righ 30.000 50.000 Left Ba 30.000 | t Mixer and 0
t Bank Velon
5.800
(4.6+4)/2
nk Cheruvan
4.600
(4+3.5)/2 | On complet Concrete Pu n side 0.600 0.600 nur side 0.600 Tota stal Deducte Net Tota | e as per D mp al Quantity d Quantity al Quantity | 208.800
258.000
165.600
225.000
857.400 c
0.000 cum | um | | | RCC M25 | 1 | 857.400 | | | 0.17 | 145.758 | | |---|--|--------------------------|----------------------|------------------------|--------------------|-------------|-----------|-------------| | | PCC 1:3:6 | 1 | 117.601 | | | 0.04 | 4.705 | | | | | | | | Tota | al Quantity | 150.463 M | 1T | | | | | | To | tal Deducte | d Quantity | 0.000 MT | | | | | | | | Net Tota | al Quantity | 150.463 M | 1T | | | | | Say | 150.463 MT | @ Rs 9156 | 6.73 / MT | Rs 1377 | 7404.90 | | 7 | 13.5.F.P.2
Plain/Reinforced ceme
RCC Grade M25 - Wit | | | • | - | • | - | ecification | | | | | | Counter For | t | | | | | | CF Lt bank | 2*10 | (2.95+0)/2 | 0.600 | (6.4+5)/2 | | 100.890 | | | | CF rt bank | 2*10 | (3.8+0)/2 | 0.600 | (7.5+6)/2 | | 153.900 | | | | CF stem Left bank | 2 | 30.000 | 0.500 | (6.4+5)/2 | | 171.000 | | | | CF stem Rt bank | 2 | 30.000 | 0.500 | (7.5+6)/2 | | 202.500 | | | | | 14 | F | REt wall RC | | } | 1 | | | | Lt bank | 2 | 50.000 | (.65+.3)/2 | (4.9+2.4)/ | | 173.376 | | | | Rt bank | ther E | 50.000 .
ngineeri | (.505+.475
ng)②rg: | 4.750.
anisatio | ns | 232.750 | | | | - | | Ď | | Tota | al Quantity | 1034.416 | cum | | | | P | K | To | tal Deducte | d Quantity | 0.000 cum | 1 | | | - | | | | Net Tota | al Quantity | 1034.416 | cum | | | | | Say 10 | 34.416 cum | @ Rs 8560 | .45 / cum | Rs 885 | 5066.45 | | 8 | od121227/2019_2020 Plain Cement Concre nominal mix in sub st including curing for 14 | te 1:3:6(1
ructure,me | chanically m | nixed, place | d in sub stru | | - | | | | | | CC | Retaining V | Vall | | | | | | Lt bank | 2 | 40.000 | 0.650 | (2.4+.5)/2 | | 75.400 | | | | Rt bank | 2 | 60.000 | 0.750 | (3.5+.5)/2 | | 180.000 | | | | | | | | Tota | al Quantity | 255.400 c | um | | | | | | То | tal Deducte | d Quantity | 0.000 cum | 1 | | | | | | | Net Tota | al Quantity | 255.400 c | um | | | | | Sav 2 | 255.400 cum | @ Rs 7051 | .86 / cum | Rs 180 | 1045.04 | | | | | , - | | | | | | | | Supply, Fitting and Reinforcement in s MORTH specificati | ubstructure co | • | • | • | | • | | |----|--|---|--|---|--|-----------------------------|--|--------------------| | | RCC M25 | 1 | 1034.416 | | | 0.17 | 175.851 | | | | PCC 1:3:6 | 1 | 255.400 | | | 0.04 | 10.217 | | | | PCC M15 | 1 | 21.844 | | | 0.03 | 0.656 | | | | | | | | Tota | al Quantity | 186.724 M | 1T | | | | | | To | otal Deducte | d Quantity | 0.000 MT | | | | | | | | Net Tota | al Quantity | 186.724 M | 1T | | | | | Say 1 | 186.724 MT | @ Rs 9184 | 2.80 / MT | Rs 1714 | 19254.9 | | | OMC, carriage of n
surface and compa
401
Grading-I - Plant M | cting with vibra | atory power ro | oller to achie | eve the desi | | ū | | | | | 1.040 | Rt b | ank velom | side
 | | | | | | | 1 | 140.000 | 6.700 | 0.250 | | 234.500 | | | | | 0 1 - | Left ban | k Cheruvan | | | | | | | | Other E | 11 9120:0001 | ngs.700g | 210.25010 | ns | 201.000 | | | | | D | D | | Tota | al Quantity | 435.500 c | um | | | | | | To | otal Deducte | d Quantity | 0.000 cum | | | | | | | | | al Quantity | 435.500 c | um | | | | | Say 4 | 35.500 cum | n @ Rs 3205 | 5.82 / cum | Rs 139 | 6134.61 | | 44 | | | | | | | | | | 11 | 4.12 Providing, laying, s including premixing tipper to site, laying compacting with vil | the Material v
in uniform lay | vith water at C
vers with pave
a achieve the | OMC in med
er in sub- ba | chanical mix
ase / base consity. | plant carria | ge of mixed | Materia | | 11 | Providing, laying, s including premixing tipper to site, laying | the Material v
in uniform lay | vith water at C
vers with pave
a achieve the | OMC in med
er in sub- ba
desired der | chanical mix
ase / base consity. | plant carria | ge of mixed | Materia | | 11 | Providing, laying, s including premixing tipper to site, laying | the Material v
g in uniform
lay
pratory roller to | vith water at C
vers with pave
achieve the
Rt b | DMC in med
or in sub- bad
desired der
ank Velom | chanical mix ase / base consity. side 0.200 | plant carria | ge of mixed
Il prepared s | Materia | | 11 | Providing, laying, s including premixing tipper to site, laying | the Material v
g in uniform lay
pratory roller to | vith water at C
vers with pave
achieve the
Rt b | DMC in med
or in sub- bad
desired der
ank Velom
6.600 | chanical mix ase / base consity. side 0.200 | plant carria | ge of mixed
Il prepared s | Materia | | 11 | Providing, laying, s including premixing tipper to site, laying | the Material vg in uniform lay pratory roller to | vith water at C
vers with pave
achieve the
Rt b | OMC in meder in sub- baddesired der
ank Velom
6.600 | chanical mix ase / base consity. side 0.200 nur side 0.200 | plant carria | ge of mixed
Il prepared s | Materia
surface | | 11 | Providing, laying, s including premixing tipper to site, laying | the Material vg in uniform lay pratory roller to | vith water at C
vers with pave
o achieve the
Rt b | OMC in meder in sub- baddesired der
ank Velom
6.600
Cheruvanr
6.600 | chanical mix ase / base consity. side 0.200 nur side 0.200 | plant carria
burse on we | ge of mixed
Ill prepared s
184.800 | Materia
surface | | | | | Say 3 | 43.200 cum | n @ Rs 3115 | 5.47 / cum | Rs 106 | 9229.30 | |----|---|--|---|--|--|---|--|-------------------------------------| | 12 | 5.1.a Providing and applying including clearing of romeans. | • | | | | • | • | | | | | | Lt bank | Cheruvanı | nur side | | | | | | | 1 | 120.000 | 6.500 | | | 780.000 | | | | | | Rt b | ank Velom | side | L | | | | | | 1 | 140.000 | 6.500 | | | 910.000 | | | | | | | | Tota | al Quantity | 1690.000 | sqm | | | | | - 0 | To | otal Deducte | d Quantity | 0.000 sqm | 1 | | | | | JAM | 140 | Net Tota | al Quantity | 1690.000 | sqm | | | | 0.000 | Say | 1690.000 s | qm @ Rs 53 | 3.96 / sqm | Rs 91 | 192.40 | | | rate of 0.20 - 0.30 kg p | er sqm on | 1260 | d bituminou
Over bridge | -375,13,6 | eaned with | mechanical | broom. | | | rate of 0.20 - 0.30 kg p | er sqm on | 1260 | 1800 | -375,13,6 | eaned with | mecnanicai | broom. | | | | 2 | 97.250 | 7.500 | 04 | | 1458.750 | | | | 0 | ther Er | 120.000 | 6.500
ank Velom | anisatio | ns
1 | 1560.000 | | | | | 1*2 | 140.000 | 6.500 | | | 1820.000 | | | | | | | | | | 1020.000 | | | | | | | | Tota | al Quantity | 4838.750 | sqm | | | | | | To | Tota | | | · · | | | | | | To | otal Deducte | | 4838.750 | 1 | | | | | Say - | | otal Deducte | d Quantity | 4838.750
0.000 sqm
4838.750 | 1 | | 14 | 5.3.1.b Providing and laying be average output of 75 bituminous binder (Votinisher to the required the desired compaction Grading - I (40 mm notine) | tonnes per
6 - 30), trar
grade, leve
n. | macadam w
hour using | 4838.750 s
ith 100-12
crushed ag
site, laid o | Net Total Qm @ Rs 10 TPH batcl ggregates over a previo | d Quantity al Quantity 0.54 / sqm at type hot ref specified busly prepa | 4838.750 0.000 sqm 4838.750 Rs 51 mix plant prograding predictions are surface | sqm 000.42 oducing mixed w with pay | | 14 | Providing and laying be average output of 75 bituminous binder (VC finisher to the required the desired compaction | tonnes per
6 - 30), trar
grade, leve
n. | macadam w
hour using
nsported to sel and alignm | 4838.750 s
ith 100-12
crushed ag
site, laid o | Net Total
Qm @ Rs 10
0 TPH batcl
ggregates of
ver a previouslied as per contractions | d Quantity al Quantity 0.54 / sqm at type hot ref specified busly prepa | 4838.750 0.000 sqm 4838.750 Rs 51 mix plant prograding predictions are surface | sqm 000.42 oducing mixed w with pay | | | | | R | t and Lt bar | nk | | | | |----|---|--|---|---|--|--|--|---| | | | 1 | 140.000 | 6.500 | 0.050 | | 45.500 | | | | | 1 | 120.000 | 6.500 | 0.050 | | 39.000 | | | | | | | | Tot | al Quantity | 120.969 c | um | | | | | | To | tal Deducte | ed Quantity | 0.000 cun | า | | | | | | | Net Tot | al Quantity | 120.969 c | um | | | | | Say 1 | 20.969 cum | @ Rs 7912 | 2.98 / cum | Rs 95 | 7225.28 | | | Providing and laying bi 75 tonnes per hour us (NRMB) @ 5.4 per cer paver finisher with sensitions and tandem if 507 complete in all res For Grading -II (13.2 m | sing crushe
nt of mix an
sor control to
collers to ac
spects | d aggregate
nd filler, trans
to the require
hieve the de | s of specifi
porting the | ed grading
hot mix to
vel and alig | , premixed
work site, land | with bitumir
aying with a
ng with smoo | nous bing
hydrosta
oth wheel | | | Tor Grading -II (13.2 III | III NOIIIIIai | 11 11/16 | Over Bridge | | 1 | | | | | | 1 | 97.250 | 7.500 | 0.030 | T. | 21.882 | | | | | 16/45 | N 3000 | nd Lt Abutn | ACT II | 2 | 21.002 | | | | | 1 | 140.000 | 6.500 | 0.030 | | 27.300 | | | | | the r Er | 2120.000 | 126.500 2 | an o .03010 | ne | 23.400 | | | | | | 18120.0001 | 1 20.000 8 | | al Quantity | 72.582 cu | m | | | | P - 1 | R | To | otal Deducte | | 0.000 cun | | | | | | | | | al Quantity | 72.582 cu | | | | | | Say 7 | 2.582 cum | | | |
6986.91 | | 16 | 8.4.1 Providing and fixing of warranty manufacture 801.3.3 fixed over alumith suitable back suppossible to IS 1239 grade cement concrete | d as per IR minium she oporting fra firmly fixed a min size 4 | RC:67 made eting, 2 mm me of MS and to the ground 5 cm x 45 cm | of Type I\
thick/ alum
ngle 25x25
nd by mean
n x 60 cm, (| / micro prishinium com x3 and supns of prope | smatic grad
posit materi
ported on (
rly designed
w ground lev | e sheeting val sheeting of she | vide clau 4 mm the 50mm n with M painting | | | exposed surface with clause 801 including I 90 cm equilateral triang | ettering syr | | and Lt ban | ks | | | | | | clause 801 including I | ettering syr | | and Lt ban | ks | | 10.000 | | | | | | | To | otal Deducte | | 0.000 eac | | |----
--|--|--|---|--|--|--|---| | | | | | | | al Quantity | 10.000 ea | | | | | | Say 1 | 0.000 each | @ Rs 4205. | .34 / each | Rs 42 | 053.40 | | 17 | 8.4.12 Providing and fixing of warranty manufacture aluminium sheeting, 2 supporting frame of MS firmly fixed to the groumin size 45 cm x 45 cm coats of epoxy painting lettering symbols etc. 50cmx 60 cm rectangul | d as per IF mm thick/ as angle 25x angle 25x and by mear as 60 cm, 6 ag over epone | RC:67 mad aluminium of 25x3 and suns of proper 60 cm below bxy primer a | e of Type I
composit ma
upported on
ly designed
ground lev
and as per | V micro pri
aterial shee
GI pipe pol
foundation
el including | smatic graditing 4 mm to the 50mm NE with M 15 painting all | de sheeting
hick with su
3 confirming
grade ceme
exposed su | fixed over
itable bac
to IS 123
nt concret
rface with | | | | | Rt | and Lt ban | ks | | | | | | | 2*5 | 3 6 | 8 | 1 | | 10.000 | | | | | Ph" | Y 662 | 53/1 | Tota | al Quantity | 10.000 ea | ch | | | | 1 4 | | To | otal Deducte | d Quantity | 0.000 eac | h | | | | 106 | Ka | KOV. | Net Tota | al Quantity | 10.000 ea | ch | | | | | Say 1 | 0.000 each | @ Rs 3970 | 06 / each | Rs 39 | 700.00 | | 18 | 8.6 | thor En | oineeri | a 318 | • , • | | | | | 18 | 8.6 Providing and fixing of manufactured as
per aluminium sheeting, 2 0.9 sqm, with suitable GI pipe pole not less thof properly designed for the cm below ground level primer and as per apprince of the control | IRC :67 H
mm thick/ a
back suppo
nan 50mm N
oundation w
including p | igh Intensit
luminium co
rting frame
NB , 2 Nos. o
ith M 15 gra
ainting all e | entification y Micro Pri pmposit mat of MS angle confirming t ade cement xposed surf | retro-reflection (Typerial sheeting 40x40x6 at 0 IS 1239, for concrete metals are with 2 of the met | torised signoe IV) grading 4 mm thi supporte irmly fixed to coats of epocharia. | with 7 yearle sheeting ck with area ed on suitable the ground m x 45 cm x x y painting | rs warrant
fixed ove
exceeding
by designed
by mean
c 60 cm, 6 | | 18 | Providing and fixing of manufactured as per aluminium sheeting, 2 0.9 sqm, with suitable GI pipe pole not less the of properly designed for below ground level | IRC :67 H
mm thick/ a
back suppo
nan 50mm N
oundation w
including p | igh Intensit
luminium co
rting frame
NB , 2 Nos. o
ith M 15 gra
ainting all e | entification y Micro Pri pmposit mat of MS angle confirming t ade cement xposed surf | retro-reflection (Typerial sheeting 40x40x6 at 0 IS 1239, for concrete metals are with 2 of the met | torised signoe IV) grading 4 mm thi supporte irmly fixed to coats of epocharia. | with 7 yearle sheeting ck with area ed on suitable the ground m x 45 cm x x y painting | rs warrant
fixed ove
exceedin
ly designe
d by mean
k 60 cm, 6 | | 18 | Providing and fixing of manufactured as per aluminium sheeting, 2 0.9 sqm, with suitable GI pipe pole not less the of properly designed for below ground level | IRC :67 H
mm thick/ a
back suppo
nan 50mm N
oundation w
including p
roved drawi | igh Intensituding frame of the second | entification y Micro Pri omposit mat of MS angle confirming t ade cement xposed surf se 801 inclu | retro-reflections and the serial sheeting 40x40x6 at the serial sheeting 40x40x6 at the serial sheeting lettering lettering sheeting lettering sheeting shee | torised signoe IV) grading 4 mm thi supporte irmly fixed to coats of epocharia. | with 7 year
le sheeting
ck with area
ed on suitable
o the ground
m x 45 cm x
exy painting
etc. | rs warrant
fixed ove
a exceedin
ly designe
d by mean
c 60 cm, 6
over epox | | 18 | Providing and fixing of manufactured as per aluminium sheeting, 2 0.9 sqm, with suitable GI pipe pole not less the of properly designed for below ground level | IRC :67 H
mm thick/ a
back suppo
nan 50mm N
oundation w
including p
roved drawi | igh Intensituding frame of the second | entification y Micro Pri omposit mat of MS angle confirming t ade cement xposed surf se 801 inclu 0.900 | retro-reflections and the serial sheeting 40x40x6 at the serial sheeting 40x40x6 at the serial sheeting lettering lettering sheeting lettering sheeting shee | torised signoe IV) grading 4 mm thi aupporte irmly fixed to coats of epong symbols al Quantity | with 7 yearle sheeting ck with area ed on suitable the ground m x 45 cm x exy painting etc. | rs warrant fixed ove a exceedin ly designe d by mean c 60 cm, 6 over epox | | 18 | Providing and fixing of manufactured as per aluminium sheeting, 2 0.9 sqm, with suitable GI pipe pole not less the of properly designed for below ground level | IRC :67 H
mm thick/ a
back suppo
nan 50mm N
oundation w
including p
roved drawi | igh Intensituding frame of the second | entification y Micro Pri omposit mat of MS angle confirming t ade cement xposed surf se 801 inclu 0.900 | retro-reflections and the serial sheeting 40x40x6 at the serial sheeting at the serial sheeting at the serial sheeting lettering at the serial sheeting lettering at the serial sheeting sheetin | torised signoe IV) grading 4 mm thi aupporte irmly fixed to coats of epong symbols al Quantity | with 7 year le sheeting ck with area ed on suitable to the ground m x 45 cm x exy painting etc. 2.160 2.160 sqm | rs warrant fixed over a exceeding by designed by mean c 60 cm, 60 over epox | | 18 | Providing and fixing of manufactured as per aluminium sheeting, 2 0.9 sqm, with suitable GI pipe pole not less the of properly designed for below ground level | IRC :67 H
mm thick/ a
back suppo
nan 50mm N
oundation w
including p
roved drawi | igh Intensity Iuminium conting frame NB , 2 Nos. of ith M 15 grainiting all earning and clause 1.200 | entification y Micro Pri omposit mat of MS angle confirming t ade cement xposed surf se 801 inclu 0.900 | retro-reflections and the serial sheeting 40x40x6 at the serial sheeting at the serial sheeting at the serial sheeting lettering at the serial sheeting lettering at the serial sheeting sheetin | torised signoe IV) grading 4 mm thing supported irmly fixed to in size 45 coats of epong symbols al Quantity di Quantity al Quantity | with 7 year le sheeting ck with area ed on suitable o the ground m x 45 cm x exy painting etc. 2.160 2.160 sqm 0.000 sqm 2.160 sqm | rs warran fixed ove exceedir ly designe d by mear 60 cm, 6 over epox | | 19 | Providing and fixing of manufactured as per aluminium sheeting, 2 0.9 sqm, with suitable GI pipe pole not less the of properly designed for below ground level | IRC :67 H
mm thick/ a
back suppo
nan 50mm N
bundation w
including p
roved drawi
2 | igh Intensity luminium conting frame NB , 2 Nos. of ith M 15 grainiting all earning and claus 1.200 Say dight thermopla 250 gms pe | entification y Micro Pri omposit mat of MS angle confirming t ade cement xposed surf se 801 inclu 0.900 To y 2.160 sqm | retro-reflections and the serial sheeting at 40x40x6 at the serial sheeting at 40x40x6 at the serial sheeting t | torised signoe IV) grading 4 mm this aupporter irmly fixed to in size 45 coats of epong symbols al Quantity al Quantity al Quantity al Quantity at Coats of epong symbols C | with 7 year le sheeting ck with area ed on suitable to the ground m x 45 cm x exy painting etc. 2.160 2.160 sqm 0.000 sqm 2.160 sqm Rs 19 ling reflecto is exclusive | rs warran fixed ove a exceedir ly designe d by mear c 60 cm, 6 over epox | | | | | | | Tota | al Quantity | 45.000 sq | m | |----|---|--|--|--|--|--|---|--| | | | | | To | otal Deducte | d Quantity | 0.000 sqn | 1 | | | | | | | Net Tota | al Quantity | 45.000 sq | m | | | | | Say | / 45.000 sq | m @ Rs 548 | 3.22 / sqm | Rs 24 | 669.90 | | 20 | 8.35 Providing and fixing ASA/HIPS/ABS mould load of more than 13. ASTM D 788, and readhesive etc. with 2 804.7.3 Road Markers/Road | ded body with
.635 T when seflectivity co
years warrar | n shanks and
tested in acc
nforming to
nty for the ro | d conformin
cordance wi
clause 804
ad stud as | g to ASTM I
th ASTM D
4.4. includii | D 4280, stro
4280, reflec
ng installati | ong enough to
tive panel co
ton, drilling, | o support
onfirming t
fixing wit | | | | 1 | 125.000 | 16 | | | 125.000 | | | | | | 6.0 N | | Tota | al Quantity | 125.000 n | 0 | | | | 6 | X 2 | To | otal Deducte | d Quantity | 0.000 no | | | | | 16 | | | Net Tota | al Quantity | 125.000 n | 0 | | | | | S | Say 125.000 | no @ Rs 2 | 13.12 / no | Rs 26 | 640.00 | | 21 | 13.5.A
Plain/Reinforced cem | | | | | 2 | echnical Spe | ecifications | | 21 | Plain/Reinforced cem
PCC Grade M15 - He | oight upto
5m
Other Er | in sub-struct | ure comple
t bank Velo | te as per dra | 2 | | ecifications | | 21 | Plain/Reinforced cem
PCC Grade M15 - He
Gaurd stone | eight upto 5m
Other Er
2*70 | in sub-struct | ure comple
t bank Velo
0.200 | te as per dra | 2 | 5.041 | ecifications | | 21 | Plain/Reinforced cem
PCC Grade M15 - He | oight upto 5m
Other Er | in sub-struct | ure complete to bank Velo | o.300 | 2 | | ecifications | | 21 | Plain/Reinforced cem
PCC Grade M15 - He
Gaurd stone | 2*70 | in sub-struct Igineer R 0.200 0.400 Lt bank | ure completed bank Velo | 0.900
0.300 | 2 | 5.041 | ecifications | | 21 | Plain/Reinforced cem PCC Grade M15 - He Gaurd stone Foundation | 2*70
2*60 | in sub-struct 1gineeri R 0.200 0.400 Lt bank 0.200 | ure completed to bank Velous 0.200 0.400 mCheruvan 0.200 | 0.900 0.300 nur side 0.900 | 2 | 5.041
6.721
4.321 | ecifications | | 21 | Plain/Reinforced cem
PCC Grade M15 - He
Gaurd stone | 2*70 | in sub-struct Igineer R 0.200 0.400 Lt bank | ure completed bank Velo | 0.900
0.300
nur side
0.900
0.300 | awing and T | 5.041
6.721
4.321
5.761 | | | 21 | Plain/Reinforced cem PCC Grade M15 - He Gaurd stone Foundation | 2*70
2*60 | in sub-struct 1gineeri R 0.200 0.400 Lt bank 0.200 | t bank Velo 0.200 0.400 mCheruvan 0.200 0.400 | 0.900 0.300 nur side 0.900 0.300 Tota | awing and T | 5.041
6.721
4.321
5.761
21.844 cu | m | | 21 | Plain/Reinforced cem PCC Grade M15 - He Gaurd stone Foundation | 2*70
2*60 | in sub-struct 1gineeri R 0.200 0.400 Lt bank 0.200 | t bank Velo 0.200 0.400 mCheruvan 0.200 0.400 | 0.900 0.300 nur side 0.900 0.300 Total | awing and T | 5.041
6.721
4.321
5.761 | m | | 21 | Plain/Reinforced cem PCC Grade M15 - He Gaurd stone Foundation | 2*70
2*60 | in sub-struct 19 10 eer R 0.200 0.400 Lt bank 0.200 0.400 | ure complete to bank Velo 0.200 0.400 mCheruvan 0.200 0.400 | 0.900 0.300 nur side 0.900 0.300 Total | al Quantity al Quantity al Quantity | 5.041
6.721
4.321
5.761
21.844 cu
0.000 cum
21.844 cu | m | | 21 | Plain/Reinforced cem PCC Grade M15 - He Gaurd stone Foundation | 2*70
2*70
2*60
2*60 | in sub-struct 19 10 200 0.400 Lt bank 0.200 0.400 Say | ure completed to bank Velo 0.200 0.400 mCheruvan 0.200 0.400 To | 0.900 0.300 Total Deducte Net Total | al Quantity al Quantity al Quantity 7.43 / cum | 5.041
6.721
4.321
5.761
21.844 cu
0.000 cum
21.844 cu
Rs 173 | m
m
m
3385.22 | | | Plain/Reinforced cem PCC Grade M15 - He Gaurd stone Foundation Foundation 13.3 | 2*70
2*70
2*60
2*60 | in sub-struct 19 10 200 0.400 Lt bank 0.200 0.400 Say) on brick we | ure completed to bank Velo 0.200 0.400 mCheruvan 0.200 0.400 To | 0.900 0.300 nur side 0.900 0.300 Total Deducte Net Total 0 @ Rs 7937 | al Quantity al Quantity al Quantity 7.43 / cum | 5.041
6.721
4.321
5.761
21.844 cu
0.000 cum
21.844 cu
Rs 173 | m
m
m
3385.22 | | | Plain/Reinforced cem PCC Grade M15 - He Gaurd stone Foundation Foundation 13.3 | 2*70
2*70
2*60
2*60 | in sub-struct 19 10 200 0.400 Lt bank 0.200 0.400 Say) on brick we | ure completed to bank Velous 0.200 0.400 0.200 0.400 To cork in sub-section of the | 0.900 0.300 nur side 0.900 0.300 Total Deducte Net Total 0 @ Rs 7937 | al Quantity al Quantity al Quantity 7.43 / cum | 5.041
6.721
4.321
5.761
21.844 cu
0.000 cum
21.844 cu
Rs 173 | m
m
m
3385.22 | | | Plain/Reinforced cem PCC Grade M15 - He Gaurd stone Foundation Foundation 13.3 | 2*70
2*70
2*60
2*60 | in sub-struct 19 | ure completed to bank Velo 0.200 0.400 mCheruvan 0.200 0.400 To 21.844 cum ork in sub-sone Lt and | 0.900 0.300 nur side 0.900 0.300 Total Deducte Net Total 0 Rs 7937 tructure as p | al Quantity al Quantity al Quantity 7.43 / cum | 5.041 6.721 4.321 5.761 21.844 cu 0.000 cum 21.844 cu Rs 173 | m
m
m
3385.22 | | | | | | То | tal Deducte | d Quantity | 0.000 sqm | 1 | |-------|---|--|--|--|---|---|--|-----------------------| | | | | | | Net Tota | al Quantity | 197.601 s | qm | | | | | Say | 197.601 sqr | m @ Rs 193 | 3.12 / sqm | Rs 38 | 160.71 | | 23 | od122752/2019_202
PVC WEEP HOLES
including cost of ma | S- Providing w | • | • | - | • | ng pressure | 4kg /sq.c | | | Lt bank | 1 | 200.000 | | | | 200.000 | | | | Rt bank | 1 | 200.000 | | | | 200.000 | | | | | | | | Tota | al Quantity | 400.000 m | netre | | | | | | То | tal Deducte | d Quantity | 0.000 met | re | | | | | C | n. | Net Tota | al Quantity | 400.000 m | netre | | | | | Say 40 | 0.000 metre | @ Rs 127. | 44 / metre | Rs 50 | 976.00 | | SI No | Description | No | K K A | В | D | CF | Quantity | Remark | | | 4 Appen | dix D -Constr | uction of Sv | vitch Room | cum Watc | hman Roor | n | | | 1 | Earth work in exca
(exceeding 30 cm in
earth, lead up to 50
soil | n depth, 1.5 n
m and lift up | n in width as
to 1.5 m, dis | well as 10 posed earth | sqm on pla | n) including | g disposal of | excavate | | 1 | (exceeding 30 cm in earth, lead up to 50 | n depth, 1.5 n | n in width as
to 1.5 m, dis | well as 10 posed earth | sqm on pla | n) including | g disposal of | excavate | | 1 | (exceeding 30 cm in earth, lead up to 50 | on depth, 1.5 no m and lift up | n in width as
to 1.5 m, dis | well as 10 posed earth | sqm on pla
to be level | n) including | disposal of atly dressed. | excavate | | 1 | (exceeding 30 cm in earth, lead up to 50 | on depth, 1.5 no m and lift up | n in width as
to 1.5 m, dis | well as 10 posed earth | sqm on pla
to be level | n) including | disposal of atly dressed. | excavate | | 1 | (exceeding 30 cm in earth, lead up to 50 | om and lift up Other E | n in width as to 1.5 m, dis | well as 10 posed earth For Cold 2.000 Leach pit | anisation 1.500 | n) including | disposal of atly dressed. 43.200 | excavate | | 1 | (exceeding 30 cm in earth, lead up to 50 | om and lift up Other E | n in width as to 1.5 m, dis | well as 10 posed earth For Colg 2.000 Leach pit 1.800 | anisation 1.500 | n) including | disposal of atly dressed. 43.200 | excavate | | 1 | (exceeding 30 cm in earth, lead up to 50 | om and lift up Other En 8 | n in width as to 1.5 m, dis ngineeri 1.800 2.800 Bel | well as 10 posed earth For Colg 2.000 Leach pit 1.800 ow plinth be | anisation 1.500 1.500 | n) including | disposal of atly dressed. 43.200 7.561 | excavate | | 1 | (exceeding 30 cm in earth, lead up to 50 | om and lift up Other E1 8 1 | n in width as to 1.5 m, dis ngineeri 1.800 2.800 Bel 1.150 | well as 10 posed earth For Colg 2.000 Leach pit 1.800 ow plinth be 0.350 | anisation 1.500 1.500 am 0.250 | n) including | 43.200 7.561 0.202 | excavate | | 1 | (exceeding 30 cm in earth, lead up to 50 | om and lift up Other E1 8 1 | 1.800
2.800
Bel
1.150
2.250 | well as 10 posed earth For Colg 2.000 Leach pit 1.800 ow plinth be 0.350 0.350 | 1.500
1.500
2.250
0.250 | n) including | 43.200 7.561 0.202 0.788 | excavate
All kinds | | 1 | (exceeding 30 cm in earth, lead up to 50 | om and lift up Other E1 8 1 | 1.800
2.800
Bel
1.150
2.250 | well as 10 posed earth For Colg 2.000 Leach pit 1.800 ow plinth be 0.350 0.350 0.350 | 1.500
1.500
2.250
0.250 | n) including
lled and nea | 43.200 7.561 0.202 0.788 1.383 | excavate
All kinds | | 1 | (exceeding 30 cm in earth, lead up to 50 | om and lift up Other E1 8 1 | 1.800
2.800
Bel
1.150
2.250 | well as 10 posed earth For Colg 2.000 Leach pit 1.800 ow plinth be 0.350 0.350 0.350 | 1.500 1.500 1.500 2.50 0.250 Total Deducte | n) including
lled and nea | 43.200 7.561 0.202 0.788 1.383 53.134 cu | excavate All kinds | | 1 | (exceeding 30 cm in earth, lead up to 50 | Other En | 1.800
2.800
Bel
1.150
2.250
3.950 | well as 10 posed earth For Colg 2.000 Leach pit 1.800 ow plinth be 0.350 0.350 0.350 | 1.500 1.500 1.500 2.50 0.250 Total Deducted Net Total | n) including lled and near near near near near near near near | 43.200 7.561 0.202 0.788 1.383 53.134 cu 0.000 cum 53.134 cu | excavate All kinds | | 2 | (exceeding 30 cm in earth, lead up to 50 | of ther English and lift up Other English 1 2 4 4 9 g in position c | n in width as to 1.5 m, dis to 1.5 m, dis to 1.5 m, dis to 1.800 2.800 Bell 1.150 2.250 3.950 Say | well as 10 posed earth For Colg 2.000 Leach pit 1.800 ow plinth be 0.350 0.350 To | 1.500 1.500 1.500 2.250 0.250 Total Deducte Net Total m @ Rs 165 | al Quantity al Quantity al Quantity al Quantity according the | 43.200 43.200 7.561 0.202 0.788 1.383 53.134 cu 0.000 cum 53.134 cu Rs 87 | m
m
770.83 | | Passage | 1 | 3.500 | 2.500 | 0.100 | | 0.875 | | |---|---|---|--|--|-------------------------------------|--|--------| | Free space | 1 | 3.600 | 2.050 | 0.100 | | 0.738 | | | Room | 1 | 3.600 | 3.730 | 0.100 | | 1.343 | | | Watchman room | 1 | 3.600 | 3.500 | 0.100 | | 1.260 | | | Toilet | 1 | 2.000 | 1.800 | 0.100 | | 0.361 | | | Toilet
below landing | 1 | 2.500 | 1.800 | 0.100 | | 0.450 | | | | | | For col | | | | | | | 8 | 1.800 | 2.000 | 0.150 | | 4.320 | | | | | | | Tota | al Quantity | 9.347 cum | ı | | | | | To | otal Deducte | d Quantity | 0.000 cum | 1 | | | | JAM | 160 | Net Tota | al Quantity | 9.347 cum | 1 | | | | Say | 9.347 cum | n @ Rs 5869 | 9.06 / cum | Rs 54 | 858.10 | | Providing and laying i centering, shuttering, fi sand :3 graded stone a | inishing an | d reinforceme | nt - All worl | | | _ | | | | | | | | | | | | | | | Plinth beam | 1 | | 1 | | | | 3 | 2.500 | Plinth beam
0.230 | 0.600 | | 1.036 | | | C | 3
the E | | NI WILLIAM | | ns | 1.036
2.981 | | | C | .1 | 2.500 | 0.230 | 0.600 | ns
7 | | | | C | the E | 2.500
n g i3.600 r i | 0.230
0.230 g | 0.600
an _{0.600} iC | ns | 2.981 | | | C | the E | 2.500
9 3.600
5,300
1.800 | 0.230
0.230 g | 0.600
0.600
0.600 | ns | 2.981
2.926 | | | Rect. portion | the E | 2.500
9 3.600
5,300
1.800 | 0.230
0.230
0.230
0.230 | 0.600
0.600
0.600 | ns | 2.981
2.926 | | | Rect. portion trapezoidal | the E | 2.500
9 3.600
5,300
1,800 | 0.230
0.230
0.230
0.230
Col footing | 0.600
0.600
0.600 | ns
1 | 2.981
2.926
0.249 | | | | the E | 2.500
3.600
5.300
1.800
1.800
(.23*.45+1
.6*1.8)/2 | 0.230
0.230
0.230
0.230
Col footing
1.600 | 0.600
0.600
0.600
0.300 | ns | 2.981
2.926
0.249
6.913 | | | | the E | 2.500
3.600
5.300
1.800
1.800
(.23*.45+1
.6*1.8)/2 | 0.230 9
0.230 9
0.230
0.230
Col footing
1.600
0.150 | 0.600
0.600
0.600
0.300 | ns | 2.981
2.926
0.249
6.913 | | | | the E E 1 1 1 8 8 8 | 2.500
3.600
5.300
1.800
1.800
(.23*.45+1
.6*1.8)/2 | 0.230 9
0.230 9
0.230
0.230
Col footing
1.600
0.150
each pit sla | 0.600
0.600
0.600
0.300 | ns | 2.981
2.926
0.249
6.913
1.791 | | | | the E E 1 1 1 8 8 8 | 2.500
3.600
5.300
1.800
1.800
(.23*.45+1
.6*1.8)/2 | 0.230 0.230 0.230 0.230 Col footing 1.600 0.150 each pit sla 1.800 | 0.600
0.600
0.600
0.300 | ns | 2.981
2.926
0.249
6.913
1.791 | | | | the E E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2.500
1.800
1.800
1.800
1.800
(.23*.45+1
.6*1.8)/2
Local up to | 0.230
0.230
0.230
0.230
Col footing
1.600
0.150
each pit sla
1.800
plinth bear | 0.600
0.600
0.600
0.300
0.100
m bottom
0.900 | ns
1 | 2.981
2.926
0.249
6.913
1.791 | m | | | the E E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2.500
1.800
1.800
1.800
1.800
(.23*.45+1
.6*1.8)/2
Local up to | 0.230
0.230
0.230
0.230
Col footing
1.600
0.150
each pit sla
1.800
plinth bear
0.450 | 0.600
0.600
0.600
0.300
0.100
m bottom
0.900 | al Quantity | 2.981
2.926
0.249
6.913
1.791
0.504 | | | | the E E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2.500
1.800
1.800
1.800
1.800
(.23*.45+1
.6*1.8)/2
Local up to | 0.230
0.230
0.230
0.230
Col footing
1.600
0.150
each pit sla
1.800
plinth bear
0.450 | 0.600 0.600 0.600 0.300 0.300 0.100 0.900 Total Deducte | al Quantity | 2.981
2.926
0.249
6.913
1.791
0.504
0.746
17.146 cu |) | | | the E E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2.500
1.800
1.800
1.800
(.23*.45+1
.6*1.8)/2
Local up to 0.230 | 0.230
0.230
0.230
0.230
Col footing
1.600
0.150
each pit sla
1.800
plinth bear
0.450 | 0.600 0.600 0.600 0.300 0.300 0.100 0.900 Total Deducte | al Quantity ad Quantity al Quantity | 2.981
2.926
0.249
6.913
1.791
0.504
0.746
17.146 cu
0.000 cum
17.146 cu | 1 | | Reinforced cement cor
and string courses, fille | | , , | , | _ | • | | • | |--|-------------|----------------|----------------|----------------------------|--------------|---------------|----------| | excluding cost of centeral street aggregation and excluding cost of centeral centera | _ | - | - | orcement :1: | 1.5:3(1 cer | nent : 1.5 co | arse sar | | | | FF col | upto beam | bottom | | | | | | 8 | 0.230 | 0.450 | 3.600 | | 2.981 | | | | | GF co | l upto slab l | oottom | | | | | | 8 | 0.230 | 0.450 | 3.600 | | 2.981 | | | | | | | Tota | al Quantity | 5.962 cum | 1 | | | | | To | otal Deducte | d Quantity | 0.000 cum | 1 | | | | 0 | 0 | Net Tota | al Quantity | 5.962 cum | 1 | | | | Say | y 5.962 cum | n @ Rs 9365 | 5.29 / cum | Rs 55 | 835.86 | | balconies, shelves, cha
five level excluding the
1.5 coarse sand (Zone | cost of cer | ntering, shutt | tering, finish | ning and reir
mm nomina | nforcement, | | • | | beam under landing | 1 | 2.500 | 0.230 | 0.300 | , | 0.173 | | | main slab ff | 1 | 11.000 | 6.600 | 0.150 | | 10.890 | | | FF beams | the# En | gi3.60011 | ngo.230°g | ano.60010 | ns | 1.988 | | | | 2 | 2.500 | 0.230 | 0.600 | 7 | 0.691 | | | | 4 | 5.300 | 0.230 | 0.600 | 1 | 2.926 | | | lintel ff | 5 | 3.600 | 0.230 | 0.150 | | 0.621 | | | | 2 | 2.500 | 0.230 | 0.150 | | 0.173 | | | | 4 | 5.300 | 0.230 | 0.150 | | 0.732 | | | GF beams | 5 | 3.600 | 0.230 | 0.600 | | 2.484 | | | | 2 | 2.500 | 0.230 | 0.600 | | 0.691 | | | | 4 | 5.300 | 0.230 | 0.600 | | 2.926 | | | Sunshade GF and FF | 2*2 | 10.620 | 0.600 | 0.100 | | 2.549 | | | sides | 2*2 | 6.200 | 0.600 | 0.100 | | 1.488 | | | Lintel GF | 1 | 1.800 | 0.230 | 0.150 | | 0.063 | | | | 4 | 5.300 | 0.230 | 0.150 | | 0.732 | | | | 6 | 3.600 | 0.230 | 0.150 | | 0.746 | | | | 3 | 2.500 | 0.230 | 0.150 | | 0.259 | | | stair waist slab | 1 | 6.090 | 1.250 | 0.150 | | 1.142 | | | | landing slab | 1 | 2.960 | 2.260 | 0.150 | | 1.004 | | |---|--|--|--|---|----------------------|-------------|---|---------------------| | | steps | 18 | 1/2 | 0.300 | 0.175 | 1.25 | 0.591 | | | | main slab gf | 10.62 | 6.200 | 0.200 | | | 13.169 | | | | stair | 1 | 3.470 | 2.500 | 0.200 | | -1.735 | | | | | | | | Tota | al Quantity | 46.038 cu | m | | | | | | To | tal Deducte | d Quantity | -1.735 cur | m | | | | | | | Net Tota | al Quantity | 44.303 cu | m | | | | | Say | 44.303 cum | @ Rs 9686 | 3.38 / cum | Rs 429 | 9135.69 | | 6 | 5.9.1
Centering and shut
columns, etc for ma | - | strutting, et | c. and remo | oval of form | for:Foundat | ions, footing | js, base | | | | | -/N | col footing | | | | 1 | | | vertical sides | 8*2 | 1.800 | 0.300 | | | 8.640 | | | | | 8*2 | 1.600 | 0.300 | 1 4 1 | | 7.680 | | | | | 14 | lead | ch pit cover | slab | 3 | | | | | edge | 1 | 9.200 | 0.100 | | | 0.920 | | | | | | | no ol | Tota | al Quantity | 17.240 sq | m | | | | O(1E | April 1 | Тс | tal Deducte | d Quantity | 0.000 sqm | า | | | | Other En | gineeri | ng Urg | anisatio | ns | 47.040 | | | | | | | | Net Tota | al Quantity | 17.240 sq | m | | | | D | | y 17.240 sqr | | | | m
3 82.24 | | 7 | 5.9.3 | D | | y 17.240 sqı | | | | | | 7 | Centering and shu | uttering includi | Sang strutting | | m @ Rs 254 | 1.19 / sqm | Rs 43 | 382.24 | | 7 | | uttering includi | Sang strutting | , etc. and r | m @ Rs 254 | 1.19 / sqm | Rs 43 | 382.24 | | 7 | Centering and shulandings, balconie | uttering including and access | Sang strutting platform | , etc. and r | m @ Rs 254 | 1.19 / sqm | Rs 43 | 382.24 | | 7 | Centering and shulandings, balconie | uttering including and access | Sang strutting platform | , etc. and r | m @ Rs 254 | 1.19 / sqm | Rs 43 | 382.24 | | 7 | Centering and shulandings, balconie | uttering including and access | Saying strutting platform 3.600 3.600 | , etc. and r
FF slab
roof
5.740
3.500 | m @ Rs 254 | 1.19 / sqm | 20.664
12.600 | 382.24 | | 7 | Centering and shulandings, balconie gen room store free sp | uttering including and access 1 1 1 | Saying strutting platform 3.600 3.600 3.600 | , etc. and r
FF slab roof
5.740
3.500
2.050 | m @ Rs 254 | 1.19 / sqm | 20.664
12.600
7.380 | 382.24 | | 7 | Centering and shulandings, balconie | uttering including and access | Saying strutting platform 3.600 3.600 | s, etc. and r
FF slab roof
5.740
3.500
2.050
5.300 | m @ Rs 254 | 1.19 / sqm | 20.664
12.600 | 382.24 | | 7 | Centering and shulandings, balconie gen room store free sp | uttering including and access 1 1 1 | Saying strutting platform 3.600 3.600 3.600 | , etc. and r
FF slab roof
5.740
3.500
2.050 | m @ Rs 254 | 1.19 / sqm | 20.664
12.600
7.380 | 382.24 | | 7 | Centering and shulandings, balconie gen room store free sp stair | uttering including and access 1 1 1 1 | 3.600
3.600
2.500 | stair | m @ Rs 254 | 1.19 / sqm | 20.664
12.600
7.380
13.250 | 382.24 | | 7 | Centering and shulandings, balconie gen room store free sp stair waist slab | 1 1 1 1 | 3.600
3.600
2.500 | stair | m @ Rs 254 | 1.19 / sqm | 20.664
12.600
7.380
13.250 | 382.24 | | 7 | Centering and shulandings, balconie gen room store free sp stair waist slab sides | 1 1 1 1 1 1 | 3.600
3.600
2.500
6.090 | stair | m @ Rs 254 emoval of | 1.19 / sqm | 20.664
12.600
7.380
13.250
7.613
0.914 | 382.24 | | | | 1 | 1.200 | 1.250 | | | -1.500 | | |----|--|---|---|---|---------------|------------|--|--------| | | | | | landing slab |) | | | | | | | 1 | 2.500 | 1.800 | | | 4.500 | | | | | | | gf slab | | | | | | | room | 1 | 3.600 | 5.300 | | | 19.080 | | | | watchman room | 1 | 3.600 | 3.500 | | | 12.600 | | | | free sp | 1 | 3.600 | 2.050 | | | 7.380 | | | | near stair | 1 | 2.500 | 2.050 | | | 5.125 | | | | | | sun | shade gf ar | nd ff | | | | | | | 2*2 | 6.200 | 0.600 | | | 14.880 | | | | bottom | 2*2 | 11.820 | 0.600 | | | 28.368 | | | | | | 5.1 | | Total | I Quantity | 158.765 s | qm | | | | 6 | J. J. | To | otal Deducted | l Quantity | -4.500 sq | m | | | | | | | Not Total | I Quantity | 154.265 s | gm | | | | 1 /50 | | 1/28/LT / | Net Total | Quantity | | • | | 8 | 5.9.5 Centering and shutte | and cantileve | g strutting, e | etc. and rem | m @ Rs 553. | 47 / sqm | Rs 85 | 381.05 | | 8 | Centering and shutte | and cantileve | ng strutting, e | | m @ Rs 553. | 47 / sqm | Rs 85 | 381.05 | | 8 | Centering and shutte | and cantileve | ng strutting, e | etc. and rem | m @ Rs 553. | 47 / sqm | Rs 85 | 381.05 | | 8 | Centering and shutte | and cantileve
Other Er | ng strutting, eers | etc. and rem | m @ Rs 553. | 47 / sqm | Rs 85 | 381.05 | | 88 | Centering and shutte | and cantileve
Other Er | g strutting, ears | etc. and rem | m @ Rs 553. | 47 / sqm | Rs 85 | 381.05 | | 8 | Centering and shutte | and cantileve
Other E1 | g strutting, ears 15.300 3.600 | plinth beam 0.600 0.600 | m @ Rs 553. | 47 / sqm | Rs 85
, beams, pl
25.440
25.920 | 381.05 | | 8 | Centering and shutte | and cantileve
Other E1
4*2
6*2
3*2 | 5.300
3.600
2.500 | 0.600
0.600 | m @ Rs 553. | 47 / sqm | Rs 85 , beams, pl 25.440 25.920 9.000 | 381.05 | | 8 | Centering and shutte | and cantileve
Other E1
4*2
6*2
3*2 | 5.300
3.600
2.500 | 0.600
0.600
0.600 | m @ Rs 553. | 47 / sqm | Rs 85 , beams, pl 25.440 25.920 9.000 | 381.05 | | 8 | Centering and shutte
girders bressumers | and cantileve
4*2
6*2
3*2
1*2 | 5.300
3.600
2.500
1.800 | 0.600
0.600
0.600
0.600 | m @ Rs 553. | 47 / sqm | Rs 85 , beams, pl 25.440 25.920 9.000 2.160 | 381.05 | | 8 | Centering and shutte
girders bressumers | and cantileve
4*2
6*2
3*2
1*2 | 5.300
3.600
2.500
1.800 | 0.600
0.600
0.600
0.600
gf | m @ Rs 553. | 47 / sqm | 25.440
25.920
9.000
2.160 | 381.05 | | 8 | Centering and shutte
girders bressumers | and cantileve
4*2
6*2
3*2
1*2
4
5 | 5.300
3.600
2.500
1.800
3.600 | 0.600
0.600
0.600
0.600
0.600
1.430 | m @ Rs 553. | 47 / sqm | Rs 85 , beams, pl 25.440 25.920 9.000 2.160 30.316 25.740 | 381.05 | | 8 | Centering and shutte
girders bressumers
beams around | 4*2
6*2
3*2
1*2
4
5 | 5.300
3.600
2.500
1.800
2.500
2.500 | 0.600
0.600
0.600
0.600
1.430
1.430 | m @ Rs 553. | 47 / sqm | Rs 85 25.440 25.920 9.000 2.160 30.316 25.740 7.150 | 381.05 | | 8 | Centering and shutter girders bressumers beams around landing beam | 4*2
6*2
3*2
1*2
4
5
2 | 5.300
3.600
2.500
1.800
2.500
2.500
2.500 | 0.600
0.600
0.600
0.600
0.600
1.430
1.430
0.830 | m @ Rs 553. | 47 / sqm | Rs 85 , beams, pl 25.440 25.920 9.000 2.160 30.316 25.740 7.150 2.075 | 381.05 | | 8 | Centering and shutter girders bressumers beams around landing beam | 4*2
6*2
3*2
1*2
4
5
2 | 5.300
3.600
2.500
1.800
2.500
2.500
2.500 | 0.600
0.600
0.600
0.600
0.600
1.430
1.430
0.830
0.150 | m @ Rs 553. | 47 / sqm | Rs 85 , beams, pl 25.440 25.920 9.000 2.160 30.316 25.740 7.150 2.075 | 381.05 | | 8 | beams around landing beam lintel | 4*2 6*2 3*2 1*2 4 5 2 1 2 | 5.300
3.600
2.500
1.800
2.500
2.500
2.500
48.000 | 0.600
0.600
0.600
0.600
0.600
1.430
1.430
0.830
0.150 | m @ Rs 553. | 47 / sqm | Rs 85 , beams, pl 25.440 25.920 9.000 2.160 30.316 25.740 7.150 2.075 14.400 | 381.05 | | | lintel | 2 | 46.600 | 0.150 | | | 13.980 | | |----|--|---------------------------|--
---|---|--|---|------------------------------------| | | | | | | Tota | al Quantity | 214.239 s | qm | | | | | | To | tal Deducte | d Quantity | 0.000 sqn | า | | | | | | | Net Tota | al Quantity | 214.239 s | qm | | | | | Say | 214.239 sqı | m @ Rs 449 | 9.40 / sqm | Rs 96 | 279.01 | | 9 | 5.9.6
Centering and shutte
Abutments, Posts an | • | ling strutting | g, etc. and | removal of | form for:C | olumns, Pil | lars, Pie | | | Col Gf to FF | 8 | 1.360 | 3.600 | | | 39.169 | | | | Col footing to GF
beam bottom | 8 | 1.360 | 4.500 | | | 48.960 | | | | | | | | Tota | al Quantity | 88.129 sq | m | | | | - | £.2 N | To | otal Deducte | d Quantity | 0.000 sqn | า | | | | 6,1 | N B | 3. X | Net Tota | al Quantity | 88.129 sq | m | | | | | Say | y 88.129 sqr | m @ Rs 613 | 3.16 / sqm | Rs 54 | 037.18 | | 10 | 5.22.6 Steel reinforcement for binding all complete upon the compl | | | | | | | | | 10 | Steel reinforcement for | | | - Mechanio | | d bars of g | | OD or mo | | 10 | Steel reinforcement for binding all complete u | ipto plinth I | (17.146+5.
962+44.30 | - Mechanio | anisatio | d bars of g | rade Fe-50 | OD or me | | 10 | Steel reinforcement for binding all complete u | ipto plinth I | (17.146+5.
962+44.30 | - Mechanio | anisatio | d bars of g | 10111.650 | OD or mo | | 10 | Steel reinforcement for binding all complete u | ipto plinth I | (17.146+5.
962+44.30 | - Mechanio | anisatio Tota | d bars of g | 10111.650 | OD or mo | | 10 | Steel reinforcement for binding all complete u | ther Er | (17.146+5.
962+44.30 | - Mechanic | Total Deducte | d bars of g
150.0
al Quantity
d Quantity
al Quantity | 10111.650
10111.650
0.000 kilo
10111.650 | OD or mo | | 11 | Steel reinforcement for binding all complete u | ther Er | (17.146+5.
962+44.30
3)
ay 10111.65
essed lateral | - Mechanic | Total Deducte Net Total 2 Rs 74.18 size 40x20 ost of mate | d bars of g 150.0 al Quantity d Quantity al Quantity / kilogram | 10111.650 10111.650 0.000 kilo 10111.650 Rs 750 | kilogram kilogram 0082.20 | | | Steel reinforcement for binding all complete under the vide iem 3,4 and 5 50.6.7.1 Laterate masonry with mortar 1:6 for foundar | sh neatly dre | ay 10111.65
essed latera | - Mechanic ng Orga To 0 kilogram (te stone of uding all co ow plinth be | Total Deducte Net Total Rs 74.18 size 40x20 ost of mate | d bars of g 150.0 al Quantity d Quantity al Quantity / kilogram | 10111.650 10111.650 0.000 kilo 10111.650 Rs 750 nearest size | kilogram kilogram 0082.20 | | | Steel reinforcement for binding all complete under the vide iem 3,4 and 5 50.6.7.1 Laterate masonry with | sh neatly dration and ba | ay 10111.65
essed latera
asement included
2.000 | To Mechanical Organical Organica Organica Organica Organica Organica Organica Organica Organica | Total Deducte Net Total Rs 74.18 size 40x20 ost of mater am 0.220 | d bars of g 150.0 al Quantity d Quantity al Quantity / kilogram | 10111.650 10111.650 0.000 kilo 10111.650 Rs 750 nearest size r charges e | kilogran kilogran kilogran 0082.20 | | | Steel reinforcement for binding all complete under the vide iem 3,4 and 5 50.6.7.1 Laterate masonry with mortar 1:6 for foundar | sh neatly dration and ba | (17.146+5.
962+44.30
3)
ay 10111.65
essed lateral
asement included
bel
2.000
2.500 | To Nechanic Organ | Total Deducte Net Total Rs 74.18 size 40x20 ost of mate am 0.220 0.220 | d bars of g 150.0 al Quantity d Quantity al Quantity / kilogram | 10111.650 10111.650 0.000 kilo 10111.650 Rs 750 nearest size r charges e | kilogran kilogran kilogran 0082.20 | | | Steel reinforcement for binding all complete under the vide iem 3,4 and 5 50.6.7.1 Laterate masonry with mortar 1:6 for foundar | sh neatly drettion and ba | ay 10111.65
essed latera
asement include
2.000
2.500
3.600 | To O kilogram (complete stone of luding all complete be | Total Deducte Net Total Rs 74.18 size 40x20 ost of mate eam 0.220 0.220 0.220 | d bars of g 150.0 al Quantity d Quantity al Quantity / kilogram | 10111.650 10111.650 0.000 kilo 10111.650 Rs 750 nearest size r charges e 0.154 0.578 1.387 | kilogram kilogram 0082.20 | | | Steel reinforcement for binding all complete under the vide iem 3,4 and 5 50.6.7.1 Laterate masonry with mortar 1:6 for foundar | sh neatly dration and ba | (17.146+5.
962+44.30
3)
ay 10111.65
essed lateral
asement included
bel
2.000
2.500 | To Nechanic Organ | Total Deducte Net Total Rs 74.18 size 40x20 ost of mate am 0.220 0.220 | d bars of g 150.0 al Quantity d Quantity al Quantity / kilogram | 10111.650 10111.650 0.000 kilo 10111.650 Rs 750 nearest size r charges e | kilograr kilograr 0082.20 | | | | 2 | 1.340 | 0.230 | 1.500 | | 0.925 | | |----|--|----------------|------------------|--------------|-------------------|---------------|-------------|---------| | | | | | | Tot | al Quantity | 6.748 cun | n | | | | | | To | otal Deducte | ed Quantity | 0.000 cun | n | | | | | | | Net Tot | al Quantity | 6.748 cun | n | | | | | Say | y 6.748 cum | @ Rs 621 | 5.33 / cum | Rs 41 | 941.05 | | 12 | 50.6.7.2
Laterate masonry w
mortar 1:6 for super
charges etc. | • | | | | | | | | | GF Hor | 5 | 3.600 | 0.230 | 2.250 | | 9.316 | | | | | 1 | 2.500 | 0.230 | 2.250 | | 1.294 | | | | vertical | 4 | 5.300 | 0.230 | 2.250 | | 10.971 | | | | landing | 1 | 2.500 | 0.230 | 2.000 | | 1.151 | | | | toilet | 1 | 2.000 | 0.230 | 2.250 | | 1.036 | | | | | 1 | 1.800 | 0.230 | 2.250 | | 0.932 | | | | step foundation | 1 | 2.500 | 0.600 | 0.220 | <u></u> | 0.330 | | | | | 3 | 2.500 | 0.300 | 0.220 | | 0.495 | | | | wind w3 | 7 | 1.500 | 0.230 | 1.500 | | -3.622 | | | | w2 | Other En | gi <u>noo</u> ri | ngo.230g | ani <u>s</u> otic | ns | -1.725 | | | | v | 2 | 0.750 | 0.230 | 0.450 | 7 | -0.155 | | | | Door D | 5 | 1.000 | 0.230 | 2.100 | | -2.415 | | | | D1 | 2 | 0.800 | 0.230 | 2.100 | | -0.772 | | | | | | _ | FF | _ | | | | | | hor | 5 | 3.600 | 0.230 | 2.850 | | 11.800 | | | | vert | 4 | 5.300 | 0.230 | 2.850 | | 13.897 | | | | store room | 2 | 2.500 | 0.230 | 2.850 | | 3.278 | | | | | | | | Tot | al Quantity | 54.500 cu | ım | | | | | | To | otal Deducte | ed Quantity | -8.689 cu | m | | | | | | | Net Tot | al Quantity | 45.811 cu | ım | | | | | Say | 45.811 cum | @ Rs 670 | 5.70 / cum | Rs 30 | 7194.82 | | 13 | 50.9.1.1 Providing wood work and fixed in position | with hold fas | t lugs or with | n dash faste | ners of req | uired dia & I | ength (hold | - | | | dash fastener shall l | be paid for se | parately), us | sing aooa ai | Jaiity Aniiii \ | wood /lack v | vooa | | | | | | | | I . | 1 | | il . | |----
--|--|---|---|--|--|---|------------------------------| | | vert | 7*4 | 1.500 | 0.100 | 0.070 | | 0.295 | | | | w2 hor | 5*2 | 1.300 | 0.100 | 0.070 | | 0.091 | | | | vert | 5*3 | 1.000 | 0.100 | 0.070 | | 0.106 | | | | vent v hor | 2*2 | 1.050 | 0.100 | 0.070 | | 0.030 | | | | vert | 2*2 | 0.450 | 0.100 | 0.070 | | 0.013 | | | | D hor | 5 | 1.300 | 0.100 | 0.070 | | 0.046 | | | | vert | 5*2 | 2.100 | 0.100 | 0.070 | | 0.148 | | | | D1 hor | 2 | 1.100 | 0.100 | 0.070 | | 0.016 | | | | vert | 2*2 | 2.100 | 0.100 | 0.070 | | 0.059 | | | | | | - | 0 | Tota | al Quantity | 0.981 cum | 1 | | | | | JAB | To | tal Deducte | d Quantity | 0.000 cum | 1 | | | | | 5.1 | | Net Tota | al Quantity | 0.981 cum | 1 | | | | | Say 0 | .981 cum @ | Rs 101129 | 0.03 / cum | Rs 99 | 207.58 | | | thick shutters included necessary screws, exemples and the street of | cluding pane | elling which | | A TOPICAL CONTRACTOR | | • | | | | necessary screws, ex | cluding pane | elling which | will be paid | for separate nisatio Tota tal Deducte | ely, all comp
ns
al Quantity
d Quantity | 9.225
9.225 sqm
0.000 sqm | direction | | | necessary screws, ex
Engineerin - charge.u | ccluding paneusing Anjili/ J | elling which wack wood | will be paid | for separate Tota tal Deducte Net Tota | ely, all comp
ns
al Quantity
d Quantity
al Quantity | 9.225
9.225 sqm
0.000 sqm
9.225 sqm | directio | | 15 | necessary screws, ex
Engineerin - charge.u | glazed shutte | Say | y 9.225 sqm, windows at butt hinges | Total Deducte Net Total @ Rs 2828 and clerestors bright finish | al Quantity d Quantity al Quantity 3.93 / sqm | 9.225 9.225 sqm 0.000 sqm 9.225 sqm Rs 26 | direction | | 15 | necessary screws, ex
Engineerin - charge.u
door D 50.9.6.1 Providing and fixing g
glass panes including | glazed shutte | Say | y 9.225 sqm, windows at butt hinges | Total Deducte Net Total @ Rs 2828 and clerestors bright finish | al Quantity d Quantity al Quantity 3.93 / sqm | 9.225 9.225 sqm 0.000 sqm 9.225 sqm Rs 26 | direction | | 15 | necessary screws, ex
Engineerin - charge.u
door D 50.9.6.1 Providing and fixing g
glass panes including
screws. Using Anjili w | glazed shutter ISI marked Nood / jack wo | Say ers for doors M.S. pressed | y 9.225 sqm
, windows at butt hinges
nick shutters | Total Deducte Net Total @ Rs 2828 and clerestors bright finish | al Quantity d Quantity al Quantity 3.93 / sqm | 9.225 9.225 sqm 0.000 sqm 9.225 sqm Rs 26 using 4 mm red size with | direction | | 15 | necessary screws, ex
Engineerin - charge.u
door D 50.9.6.1 Providing and fixing glass panes including
screws. Using Anjili w | glazed shutter ISI marked Nood / jack wo | Say ers for doors M.S. pressed ood 30 mm th | y 9.225 sqm
, windows a
butt hinges
nick shutters
1.350 | Total Deducte Net Total @ Rs 2828 and clerestors bright finish | al Quantity d Quantity al Quantity 3.93 / sqm | 9.225 9.225 sqm 0.000 sqm 9.225 sqm Rs 26 using 4 mm red size with | direction | | 15 | necessary screws, ex
Engineerin - charge.u
door D 50.9.6.1 Providing and fixing glass panes including
screws. Using Anjili w W3 | glazed shutter ISI marked Nood / jack wo | Say ers for doors M.S. pressed bod 30 mm th 0.430 0.430 | y 9.225 sqm
, windows a
butt hinges
nick shutters
1.350
1.350 | Total Deducte Net Total @ Rs 2828 and clerestors bright finishs | al Quantity d Quantity al Quantity 3.93 / sqm | 9.225 9.225 sqm 0.000 sqm 9.225 sqm Rs 26 using 4 mm red size with 12.191 5.805 | ogen and thick the necession | | 15 | necessary screws, ex
Engineerin - charge.u
door D 50.9.6.1 Providing and fixing glass panes including
screws. Using Anjili w W3 | glazed shutter ISI marked Nood / jack wo | Say ers for doors M.S. pressed bod 30 mm th 0.430 0.430 | y 9.225 sqm
, windows at butt hinges
nick shutters
1.350
1.350
0.450 | Total Deducte Net Total @ Rs 2828 and clerestors bright finishs | al Quantity al Quantity al Quantity 3.93 / sqm bry windows hed of requi | 9.225 9.225 sqm 0.000 sqm 9.225 sqm Rs 26 using 4 mm red size with 12.191 5.805 0.630 | n on thick in neces | | 15 | necessary screws, ex
Engineerin - charge.u
door D 50.9.6.1 Providing and fixing glass panes including
screws. Using Anjili w W3 | glazed shutter ISI marked Nood / jack wo | Say ers for doors M.S. pressed bod 30 mm th 0.430 0.430 | y 9.225 sqm
, windows at butt hinges
nick shutters
1.350
1.350
0.450 | Total Deducte Net Total @ Rs 2828 and clerestors bright finishs Total tal Deducte | al Quantity al Quantity al Quantity 3.93 / sqm bry windows hed of requi | 9.225 9.225 sqm 0.000 sqm 9.225 sqm Rs 26 using 4 mm red size with 12.191 5.805 0.630 18.626 sq | m | | 15 | necessary screws, ex
Engineerin - charge.u
door D 50.9.6.1 Providing and fixing glass panes including
screws. Using Anjili w W3 | glazed shutter ISI marked Nood / jack wo | Say ers for doors M.S. pressed bod 30 mm th 0.430 0.700 | y 9.225 sqm , windows at butt hinges nick shutters 1.350 1.350 0.450 | Total Deducte Net Total @ Rs 2828 and clerestors bright finishs Total tal Deducte | al Quantity al Quantity al Quantity al Quantity bry windows hed of requi | 9.225 9.225 sqm 0.000 sqm 9.225 sqm Rs 26 using 4 mm red size with 12.191 5.805 0.630 18.626 sq 0.000 sqm 18.626 sq | m | | | Providing and fixing M round bars etc. including frames with rawl plugs | ng priming c | | | | | | • | |----|--|---|---|---
---|---|--|---| | | W3 | 7*3 | 0.430 | 1.350 | | 17.16 | 209.189 | | | | w2 | 5*2 | 0.430 | 1.350 | | 17.16 | 99.614 | | | | V | 2 | 0.700 | 0.400 | | 17.16 | 9.610 | | | | Grill Main entrance | 1 | 2.500 | 2.100 | | 17.16 | 90.090 | | | | | | | | Tota | al Quantity | 408.503 k | g | | | | | | To | tal Deducte | d Quantity | 0.000 kg | | | | | | | | Net Tota | al Quantity | 408.503 k | g | | | | | B | Say 408.503 | kg @ Rs 14 | 47.38 / kg | Rs 60 | 205.17 | | | wide i vo sneet out of | wnich/5 mr | n shall be ta | pered in 45 | degree on t | h inner side | to form top | | | | rail and 115 mm wide sides to form lock rail mmx2) thick, 20 mm w 5 mm thick both side F mm (5 mm + 2 mm) solvent cement adhesi side of the 'C' Channel manufacture's specific | PVC sheet Top, botto ide cross PV PVC sheet to thick x 15 n ve. An addit using PVC | out of which m and lock /C sheet be to be fitted in m wide PV ional 5 mm solvent adh | rails shall be provided as the M.S. fra CC sheet be thick PVC steesive etc. co | all be flat and pe provided gap insert frame welded ading on interpretable as possible. | both side of or top rail & // /sealed to ner side, and width is to per direction | nall be taper
of the panel
bottom rail.
the styles &
nd joined to
be stuck on | and bott
red on b
. 10 mm
paneling
rails wit
gether v
the inte | | | rail and 115 mm wide sides to form lock rail mmx2) thick, 20 mm w 5 mm thick both side f mm (5 mm + 2 mm) solvent cement adhesi side of the 'C' Channel | PVC sheet Top, botto ide cross PV PVC sheet to thick x 15 n ve. An addit using PVC | out of which m and lock /C sheet be to be fitted in m wide PV ional 5 mm solvent adh | rails shall be provided as the M.S. fra CC sheet be thick PVC steesive etc. co | all be flat and pe provided gap insert frame welded ading on interpretable as possible. | both side of or top rail & // /sealed to ner side, and width is to per direction | nall be taper
of the panel
bottom rail.
the styles &
nd joined to
be stuck on | and bott
red on b
. 10 mm
paneling
rails wit
gether v
the inte | | | rail and 115 mm wide sides to form lock rail mmx2) thick, 20 mm w 5 mm thick both side F mm (5 mm + 2 mm) solvent cement adhesi side of the 'C' Channel manufacture's specific | PVC sheet . Top, botto ide cross PV PVC sheet to thick x 15 n ve. An addit using PVC ation & draw | out of which m and lock /C sheet be b be fitted in m wide PV ional 5 mm solvent adh ving.30 mm | rails shall be provided as the M.S. fra CC sheet be thick PVC stesive etc. cothick plain P | all be flat and pe provided gap insert fame welded ading on interpretable as possible. | both side of or top rail & // /sealed to ner side, and width is to per direction | nall be taper
of the panel
bottom rail.
the styles &
nd joined to
be stuck on
of Engineer | and bott
red on b
. 10 mm
paneling
rails wit
gether v
the inte | | | rail and 115 mm wide sides to form lock rail mmx2) thick, 20 mm w 5 mm thick both side F mm (5 mm + 2 mm) solvent cement adhesi side of the 'C' Channel manufacture's specific | PVC sheet . Top, botto ide cross PV PVC sheet to thick x 15 n ve. An addit using PVC ation & draw | out of which m and lock /C sheet be to be fitted in m wide PV ional 5 mm solvent adhiving 30 mm | rails shall be provided as the M.S. fra CC sheet be thick PVC stesive etc. controlled thick plain P | all be flat and pe provided gap insert fame welded ading on interpretable as possible. | both side of or top rail & /sealed to ner side, are width is to per direction atters | nall be taper
of the panel
bottom rail.
the styles &
nd joined to
be stuck on
of Engineer | and bott
red on b
. 10 mm
paneling
rails wit
gether v
the inte | | | rail and 115 mm wide sides to form lock rail mmx2) thick, 20 mm w 5 mm thick both side F mm (5 mm + 2 mm) solvent cement adhesi side of the 'C' Channel manufacture's specific | PVC sheet . Top, botto ide cross PV PVC sheet to thick x 15 n ve. An addit using PVC ation & draw | out of which m and lock /C sheet be to be fitted in m wide PV ional 5 mm solvent adhiving 30 mm | rails shall be provided as the M.S. fra CC sheet be thick PVC stesive etc. controlled thick plain P | all be flat and be provided gap insert for ame welded ading on interpretable as possible. Total Deducted and Deducted at all Deducted and | both side of or top rail & /sealed to ner side, are width is to per direction atters | hall be taper
of the panel
bottom rail.
the styles &
nd joined to
be stuck on
of Engineer
3.075 | and both
red on b
. 10 mm
paneling
rails with
gether w
the inte | | | rail and 115 mm wide sides to form lock rail mmx2) thick, 20 mm w 5 mm thick both side F mm (5 mm + 2 mm) solvent cement adhesi side of the 'C' Channel manufacture's specific D1 | PVC sheet . Top, botto ide cross PV PVC sheet to thick x 15 n ve. An addit using PVC ation & draw | out of which m and lock /C sheet be to be fitted in m wide PV ional 5 mm solvent adh ving.30 mm 0.750 | rails shall be provided as the M.S. fra CC sheet be thick PVC stesive etc. controlled thick plain P | all be flat and be provided gap insert fame welded ading on interpretable as possible. Total Deducted Net Total | both side of top rail & /sealed to ner side, are width is to per direction atters al Quantity d Quantity al Quantity | hall be taper of the panel bottom rail. the styles & nd joined to be stuck on of Engineer 3.075 3.075 sqm 0.000 sqm 3.075 sqm | and bott
red on b
. 10 mm
paneling
rails wit
gether v
the inte | | 18 | rail and 115 mm wide sides to form lock rail mmx2) thick, 20 mm w 5 mm thick both side F mm (5 mm + 2 mm) solvent cement adhesi side of the 'C' Channel manufacture's specific D1 | PVC sheet . Top, botto ide cross P\ PVC sheet to thick x 15 n ve. An addit using PVC ation & draw 2 | out of which m and lock /C sheet be be fitted in m wide PV ional 5 mm solvent adh ving.30 mm 0.750 | rails shall be provided as a the M.S. frace thick PVC struck plain P 2.050 | all be flat and be provided gap insert fame welded ading on interpretable as possible. Total Deducted Net Total | both side of top rail & /sealed to ner side, are width is to per direction atters al Quantity d Quantity al Quantity | hall be taper of the panel bottom rail. the styles & nd joined to be stuck on of Engineer 3.075 3.075 sqm 0.000 sqm 3.075 sqm | and bott
red on b
. 10 mm
paneling
rails wit
gether v
the inte | | 18 | rail and 115 mm wide sides to form lock rail mmx2) thick, 20 mm w 5 mm thick both side F mm (5 mm + 2 mm) solvent cement adhesi side of the 'C' Channel manufacture's specific D1 | PVC sheet . Top, botto ide cross P\ PVC sheet to thick x 15 n ve. An addit using PVC ation & draw 2 | out of which m and lock /C sheet be be fitted in m wide PV ional 5 mm solvent adh ving.30 mm 0.750 | rails shall be provided as a the M.S. frace thick PVC struck plain P 2.050 To y 3.075 sqm | all be flat and be provided gap insert fame welded ading on interpretable as possible. Total Deducted Net Total | both side of top rail & /sealed to ner side, are width is to per direction atters al Quantity d Quantity al Quantity | hall be taper of the panel bottom rail. the styles & nd joined to be stuck on of Engineer 3.075 3.075 sqm 0.000 sqm 3.075 sqm | and bott
red on b
. 10 mm
paneling
rails wit
gether v
the inte | | 18 | rail and 115 mm wide sides to form lock rail mmx2) thick, 20 mm w 5 mm thick both side F mm (5 mm + 2 mm) solvent cement
adhesi side of the 'C' Channel manufacture's specific D1 13.1.1 12 mm cement plaster | PVC sheet . Top, botto ide cross P\ PVC sheet to thick x 15 n ve. An addit using PVC ation & draw 2 of mix:1:4 (| out of which m and lock /C sheet be be fitted in m wide PV ional 5 mm solvent adh ving.30 mm 0.750 Sa 1 cement : 4 | rails shall be provided as a the M.S. frace thick PVC struck plain P 2.050 To y 3.075 sqm 4 fine sand) wall | all be flat and be provided gap insert fame welded ading on interpretable as possible. Total Deducted Net Total | both side of top rail & /sealed to ner side, are width is to per direction atters al Quantity d Quantity al Quantity | nall be taper of the panel bottom rail. the styles & nd joined to be stuck on of Engineer 3.075 3.075 sqm 0.000 sqm 3.075 sqm Rs 11 | and bott
red on b
. 10 mm
paneling
rails wit
gether v
the inte | | 18 | rail and 115 mm wide sides to form lock rail mmx2) thick, 20 mm w 5 mm thick both side F mm (5 mm + 2 mm) solvent cement adhesi side of the 'C' Channel manufacture's specific. D1 13.1.1 12 mm cement plaster outside | PVC sheet Top, botto ide cross PV PVC sheet to thick x 15 n ve. An addit using PVC ation & draw 2 of mix:1:4 (| out of which m and lock /C sheet be be fitted in m wide PV ional 5 mm solvent adh ving.30 mm 0.750 Sa 1 cement : 4 | rails shall be provided as a the M.S. frace thick PVC struck plain P 2.050 To y 3.075 sqm 4 fine sand) wall (3.6+3.6) | all be flat and be provided gap insert fame welded ading on interpretable as possible. Total Deducted Net Total | both side of top rail & /sealed to ner side, are width is to per direction atters al Quantity d Quantity al Quantity | nall be taper of the panel bottom rail. the styles & nd joined to be stuck on of Engineer 3.075 3.075 sqm 0.000 sqm 3.075 sqm Rs 11 | and bott
red on b
. 10 mm
paneling
rails wit
gether v
the inte | | 18 | rail and 115 mm wide sides to form lock rail mmx2) thick, 20 mm w 5 mm thick both side F mm (5 mm + 2 mm) solvent cement adhesi side of the 'C' Channel manufacture's specific D1 13.1.1 12 mm cement plaster | PVC sheet Top, botto ide cross PV PVC sheet to thick x 15 n ve. An addit using PVC ation & draw 2 of mix:1:4 (| out of which m and lock /C sheet be be fitted in m wide PV ional 5 mm solvent adh ving.30 mm 0.750 Sa 1 cement : 4 | rails shall be provided as a the M.S. frace thick PVC struck plain P 2.050 To y 3.075 sqm 4 fine sand) wall | all be flat and be provided gap insert fame welded ading on interpretable as possible. Total Deducted Net Total | both side of top rail & /sealed to ner side, are width is to per direction atters al Quantity d Quantity al Quantity | nall be taper of the panel bottom rail. the styles & nd joined to be stuck on of Engineer 3.075 3.075 sqm 0.000 sqm 3.075 sqm Rs 11 | red on b . 10 mm paneling rails wit gether w the inte | | | below landing | 1 | 2.500 | 3.000 | | 7.500 | | |----|--|-----------------------------|--|---|-----------------------|---|--------| | | toilet all round | 1 | 3.800 | 3.000 | | 11.400 | | | | do landing | 2 | 2.500 | 2.000 | | 10.000 | | | | steps | 2 | 2.500 | 0.520 | | 2.600 | | | | | | | FF | | | | | | near stair | 1 | 15.080 | 3.600 | | 54.289 | | | | Gen room | 1 | 18.680 | 3.600 | | 67.248 | | | | store | 1 | 14.200 | 3.600 | | 51.120 | | | | free space | 1 | 11.200 | 3.600 | | 40.320 | | | | w3 | 7 | 1.500 | 1.500 | | -15.750 | | | | w2 | 5 | 1.000 | 1.500 | | -7.500 | | | | V | 2 | 0.750 | 0.450 | | -0.675 | | | | D | 5 | 1.000 | 2.100 | | -10.500 | | | | D1 | 2 | 0.800 | 2.100 | 12 | -3.360 | | | | Grill | 1 | 2.500 | 2.100 | | -5.250 | | | | | 400 | | | Total Quantity | 654.806 sqm | | | | | | PR TO BEST | То | tal Deducted Quantity | -43.035 sqm | | | | | Other En | ngineeri | ng Orga | n Net Total Quantity | 611.771 sqm | | | | | | Say | 611.771 sqr | m @ Rs 226.67 / sqm | Rs 138670. | 13 | | 19 | 5.23 | | | C work with | 6mm thick coment me | ortar 1:3 (coment : | 3 fin | | | Smooth finishing of the sand). | e exposed s | urface of RC | C WOIK WITH | onin thick cement inc | itai 1.5 (cement. | 3 1111 | | | _ | e exposed s | urface of RC | sun shade | omm thick cement mo | intal 1.5 (Cement . | | | | _ | e exposed s | 6.200 | | omm trick cement mo | 17.360 | | | | sand). | | | sun shade | omm trick cement mo | | | | | sand). | 2*2 | 6.200 | sun shade | omm trick cement mo | 17.360 | | | | sand). | 2*2 | 6.200 | sun shade
0.700
0.700 | omm trick cement mo | 17.360 | | | | sand). GF and FF | 2*2 | 6.200 | sun shade 0.700 0.700 waist slab | 0.175 | 17.360 | | | | sand). GF and FF steps | 2*2
2*2 | 6.200
11.820
1.250 | sun shade
0.700
0.700
waist slab
0.475 | | 17.360
33.096
10.688 | | | | sand). GF and FF steps side | 2*2
2*2
18 | 6.200
11.820
1.250
1/2 | sun shade 0.700 0.700 waist slab 0.475 0.300 | | 17.360
33.096
10.688
0.473 | | | | sand). GF and FF steps side | 2*2
2*2
18 | 6.200
11.820
1.250
1/2 | sun shade 0.700 0.700 waist slab 0.475 0.300 1.250 | | 17.360
33.096
10.688
0.473 | | | | sand). GF and FF steps side waist slab ceiling | 2*2
2*2
18
18
4 | 6.200
11.820
1.250
1/2
6.090 | sun shade 0.700 0.700 waist slab 0.475 0.300 1.250 GF | | 17.360
33.096
10.688
0.473
30.450 | | | | stair room | 1 | 2.400 | 1.250 | | | 3.000 | | |----|---|--|--|---|---|---|---|--| | | landing | 1 | 2.500 | 1.800 | | | 4.500 | | | | | | | FF | | | | | | | Gen room | 1 | 3.600 | 5.740 | | | 20.664 | | | | | 1 | 2.020 | 3.500 | | | 7.070 | | | | store | 1 | 3.500 | 3.500 | | | 12.250 | | | | stair | 1 | 2.500 | 5.740 | | | 14.351 | | | | | | | | Tota | al Quantity | 194.236 s | qm | | | | | | To | otal Deducte | d Quantity | 0.000 sqn | า | | | | | | 0 | Net Tota | al Quantity | 194.236 s | qm | | | | | Say | 194.236 sq | m @ Rs 188 | 3.46 / sqm | Rs 36 | 605.72 | | | thick bed of cement | 74 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | 734 | | | • | | | per sqm, including p | oointing in whi | te cement m | ixed with pig | 734 | | le complete. | • | | | per sqm, including p | 74 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 2.500
1.800 | 1.500
1.500 | 734 | | 7.500
5.400 | • | | | per sqm, including p | opinting in which | 2.500 | 1.500 | gment of ma | | 7.500 | • | | | per sqm, including p | opinting in which is a contract of the contrac | 2.500
1.800 | 1.500
1.500
1.500
1.500 | gment of ma | | 7.500
5.400 | • | | | per sqm, including p | opinting in which | 2.500
1.800
2.000 | 1.500
1.500
1.500
1.500
1.500 | gment of ma | | 7.500
5.400
6.000 | • | | | per sqm, including p Landing toilet Room toilet | opinting in which which which which will be considered as a second control of the | 2.500
1.800
2.000
1.800 | 1.500
1.500
1.500
1.500 | gment of ma | | 7.500
5.400
6.000
5.400 | • | | | per sqm, including p Landing toilet Room toilet | Other E | 2.500
1.800
2.000
1.800
0.230 | 1.500
1.500
1.500
1.500
1.500 | anisatio | |
7.500
5.400
6.000
5.400
1.381 | | | | per sqm, including p Landing toilet Room toilet | Other E | 2.500
1.800
2.000
1.800
0.230 | 1.500
1.500
1.500
1.500
1.500
1.500 | anisatio Tota | tching shad | 7.500
5.400
6.000
5.400
1.381
-2.400 | m | | | per sqm, including p Landing toilet Room toilet | Other E | 2.500 1.800 2.000 1.800 0.230 0.800 | 1.500
1.500
1.500
1.500
1.500
1.500 | Total Deducte Net Total | al Quantity d Quantity al Quantity | 7.500 5.400 6.000 5.400 1.381 -2.400 25.681 sq -2.400 sqi 23.281 sq | m
m | | | per sqm, including p Landing toilet Room toilet Door sides | Other E | 2.500 1.800 2.000 1.800 0.230 0.800 | 1.500
1.500
1.500
1.500
1.500
1.500 | anisatio Tota | al Quantity d Quantity al Quantity | 7.500 5.400 6.000 5.400 1.381 -2.400 25.681 sq -2.400 sqi 23.281 sq | m
m | | 21 | per sqm, including p Landing toilet Room toilet | g Ceramic glast quality confo | 2.500 1.800 2.000 1.800 0.230 0.800 Sagazed floor tile orming to IS: 20 mm thick | 1.500
1.500
1.500
1.500
1.500
1.500
1.500
1.500
1.500
1.500
23.281 sq | Total Deducte Net Total Met | al Quantity d Quantity al Quantity 3.13 / sqm (thickness ke, in colou ement : 4 C | 7.500 5.400 6.000 5.400 1.381 -2.400 25.681 sq -2.400 sqr 23.281 sq Rs 22 | m
m
725.28
ified by
White, Iv | | 21 | per sqm, including p Landing toilet Room toilet Door sides 11.37 Providing and layin manufacturer), of 1s Grey, Fume Red Br | g Ceramic glast quality confo | 2.500 1.800 2.000 1.800 0.230 0.800 Sagazed floor tile orming to IS: 20 mm thick | 1.500
1.500
1.500
1.500
1.500
1.500
1.500
1.500
1.500
1.500
23.281 sq | Total Deducte Net Total Met | al Quantity d Quantity al Quantity 3.13 / sqm (thickness ke, in colou ement : 4 C | 7.500 5.400 6.000 5.400 1.381 -2.400 25.681 sq -2.400 sqr 23.281 sq Rs 22 | m
m
725.28
ified by
White, Ive | | | Contract | | 2,000 | F 740 | | | 20.004 | | |----|---|---------|--------------|--------------|------------------|------------|------------|----------| | | Gen room | 1 | 3.600 | 5.740 | | | 20.664 | | | | | 1 | 2.020 | 3.500 | | | 7.070 | | | | store | 1 | 3.600 | 3.500 | | | 12.600 | | | | stair room | 1 | 1.540 | 2.500 | | | 3.850 | | | | | 1 | 1.200 | 1.250 | | | 1.500 | | | | skirting add 10% | 1 | 10.390 | | | | 10.390 | | | | | | T | GF | | | I | | | | Room | 1 | 1.670 | 2.030 | | | 3.391 | | | | toilet passage | 1 | 2.000 | 1.400 | | | 2.800 | | | | | 1 | 3.600 | 3.730 | | | 13.428 | | | | | 1 | 3.600 | 3.500 | | | 12.600 | | | | | 1 | 2.020 | 3.500 | 1 | | 7.070 | | | | watch man r | 1 | 3.740 | 2.500 | 7 13 | | 9.351 | | | | | 1 | 1.540 | 2.500 | 1-21 | | 3.850 | | | | front step | 2 | 2.500 | 0.520 | كالمراش | 1 | 2.600 | | | | stair step | 18 | 1.250 | 0.475 | | | 10.688 | | | | side | 18 | 1/2 | 0.175 | 0.300 | | 0.473 | | | | landing | Other E | gi2.5001i | ng.800g | anisations | S | 4.500 | | | | | | | | Total C | Quantity | 134.925 s | qm | | | | | | To | otal Deducted C | Quantity | 0.000 sqn | า | | | | | | | Net Total C | Quantity | 134.925 s | qm | | | | | Say | 134.925 sq | m @ Rs 902.15 | 5 / sqm | Rs 12 | 1722.59 | | 22 | 9.55.2
Providing and fixing
complete:100x58x1 | = | M.S. presse | d butt hing | es bright finish | ned with | necessary | screws | | | Windows | 102 | | | | | 102.000 | | | | Vent | 8 | | | | | 8.000 | | | | | | | | Total C | Quantity | 110.000 n | 0 | | | | | | To | otal Deducted C | Quantity | 0.000 no | | | | | | | | Net Total C | Quantity | 110.000 n | 0 | | | | | | Say 110.00 | 00 no @ Rs 35. | 91 / no | Rs 39 | 950.10 | | 23 | 9.63.1 Providing and fixing etc. complete:250x1 | | kidised M.S. | tower bolt b | lack finish, (Ba | rrel type) | with neces | sary scr | | | Door | 5 | 2.000 | | | | 10.000 | | |----|--|------------------------------------|---|-----------------------------|--|--|---|--| | | | | | | Tot | al Quantity | 10.000 nc |) | | | | | | То | tal Deducte | ed Quantity | 0.000 no | | | | | | | | Net Tot | al Quantity | 10.000 no |) | | | | | | Say 10.00 | 0 no @ Rs | 83.88 / no | Rs 8 | 38.80 | | 24 | 9.66.2
Providing and fix
etc. complete:10 | | oxidised M.S. | handles co | onforming t | o IS : 4992 | with necess | sary scre | | | Door | 2 | 1.000 | | | | 2.000 | | | | | | | | Tota | al Quantity | 2.000 no | | | | | | Ros | То | tal Deducte | ed Quantity | 0.000 no | | | | | | 1/10 | Mr. | Net Tot | al Quantity | 2.000 no | | | | | | 太子 W | Say 2.00 | 0 no @ Rs | 29.69 / no | Rs : | 59.38 | | | surface:Water t | 15280 | | | 5 11) | L | 611 770 | | | | Applying one co
surface:Water t | | | | 3 AD | L | | | | | vide item 18 | 1 | 611.770 | | | 2 | 611.770 | | | | item 19 | 1 | 194.236 | 101727 | | | 194.236 | | | | | Other E | ngineerin | g Orga | anisa Te t | al Quantity | 806.006 s | qm | | | | D. | ĎI | То | tal Deducte | d Quantity | 0.000 sqn | า | | | | | KI | | Net Tot | al Quantity | 806.006 s | qm | | | | | | | | ar a a arritry | | | | | | | Say | 806.006 sc | qm @ Rs 48 | | | 034.87 | | 26 | 13.60.1 Wall painting with or more coats or vide item 26 | • | · | | qm @ Rs 48 | 3.43 / sqm | Rs 39 | | | 26 | Wall painting with | n new work | n paint of appr | | qm @ Rs 48 | 3.43 / sqm | Rs 39 | shade:T | | 26 | Wall painting with | n new work | n paint of appr | oved brand | qm @ Rs 48 | 3.43 / sqm Ifacture to g | Rs 39 ive an even 806.007 | shade:T | | 26 | Wall painting with | n new work | n paint of appr | oved brand | gm @ Rs 48 d and manu Tota tal Deducte | 3.43 / sqm Ifacture to g | Rs 39 ive an even 806.007 | shade:T
qm | | 26 | Wall painting with | n new work | 806.007 | oved brand | gm @ Rs 48 d and manu Tota tal Deducte | 3.43 / sqm Ifacture to g al Quantity ed Quantity al Quantity | Rs 39 ive an even 806.007 806.007 s 0.000 sqn 806.007 s | shade:T
qm | | 26 | Wall painting with | Deluxe Multi surpecifications:Pair | Say 8 rface paint synting wood work //10 sqm over | To 06.007 sqr rstem for i | Total Deducted Net Total Deducted Net Total new Rs 110 | al Quantity al Quantity al Quantity 0.68 / sqm and exteriors | Rs 39 ive an even 806.007 806.007 s 0.000 sqn 806.007 s Rs 89 s using prinof required | shade:T qm qm 208.85 mer as per shade. T | | | | _ | 4 000 | 4.500 | | 4.0 | | | |----|--|--|--|---
--|---|--|--| | | w2 | 5 | 1.000 | 1.500 | | 1.3 | 9.750 | | | | V | 2 | 0.750 | 0.450 | | 1.3 | 0.878 | | | | D | 5 | 1.000 | 2.100 | | 1.3 | 13.650 | | | | | | | | Tota | al Quantity | 44.753 sq | m | | | | | | To | tal Deducte | d Quantity | 0.000 sqn | า | | | | | | | Net Tota | al Quantity | 44.753 sq | m | | | | | Say | y 44.753 sq | m @ Rs 116 | .12 / sqm | Rs 5′ | 196.72 | | 28 | 13.61.1 Painting with synthetic more coats on new wo | • | int of approv | ed brand a | nd manufac | ture to give | an even sh | ade:Two c | | | | | C. | grill work | T | | T | T | | | grill | 1 | 2.500 | 2.100 | | | 5.250 | | | | Window | 7*3 | 0.430 | 1.350 | | | 12.191 | | | | | 5*2 | 0.430 | 1.350 | 1 4 1 | | 5.805 | | | | V | 2 | 0.550 | 0.400 | 10 | | 0.441 | | | | | | | | Tota | al Quantity | 23.687 sq | m | | | | 7 | | To | otal Deducte | d Quantity | 0.000 sqn | า | | | | | Reg | SPE P | Net Tota | al Quantity | 23.687 sq | m | | | | ther Er | igineeri
Sa | y 23.687 sq | m @ Rs 102 | 11S
2.75 / sqm | Rs 24 | 433.84 | | | | | | | | 1 | | | | 29 | 17.3.1 Providing and fixing will litre low level white vit flush bend, overflow approved municipal dethe walls and floors whe | reous china
arrangeme
esign comple | flushing cist
nt with spec
ete, including | tern & C.P.
cials of sta
g painting of | flush bend v
ndard make
fittings and | vith fittings
and moso
brackets, c | & C.I. brack
quito proof
utting and m | ets, 40 mr
coupling coaking goo | | 29 | Providing and fixing white low level white viter flush bend, overflow | reous china
arrangeme
esign comple
nerever requ | flushing cist
nt with spec
ete, including
ired:W.C. p | tern & C.P.
cials of sta
g painting of | flush bend v
ndard make
fittings and | vith fittings
and moso
brackets, c | & C.I. brack
quito proof
utting and m
tic seat and | ets, 40 mn
coupling on
aking goo | | 29 | Providing and fixing will litre low level white vit flush bend, overflow approved municipal de | reous china
arrangeme
esign comple | flushing cist
nt with spec
ete, including | tern & C.P.
cials of sta
g painting of | flush bend vindard make fittings and marked whit | with fittings
and moso
brackets, c
e solid plas | & C.I. brack quito proof utting and material tic seat and 2.000 | ets, 40 mn
coupling o
naking good
lid | | 29 | Providing and fixing will litre low level white vit flush bend, overflow approved municipal de | reous china
arrangeme
esign comple
nerever requ | flushing cist
nt with spec
ete, including
ired:W.C. p | tern & C.P.
cials of sta
g painting of
an with ISI | flush bend vandard make fittings and marked white | with fittings and moso brackets, c e solid plas al Quantity | & C.I. brack quito proof utting and mitic seat and 2.000 | ets, 40 mn
coupling o
naking good
lid | | 29 | Providing and fixing will litre low level white vit flush bend, overflow approved municipal de | reous china
arrangeme
esign comple
nerever requ | flushing cist
nt with spec
ete, including
ired:W.C. p | tern & C.P.
cials of sta
g painting of
an with ISI | flush bend value of the fittings and marked white the fittings and marked white the fittings are the fittings and marked white the fittings are ar | with fittings and moso brackets, c e solid plas al Quantity d Quantity | & C.I. brack quito proof utting and m tic seat and 2.000 2.000 eac 0.000 eac | tets, 40 mr
coupling c
naking good
lid
h | | 29 | Providing and fixing will litre low level white vit flush bend, overflow approved municipal de | reous china
arrangeme
esign comple
nerever requ | flushing cist
nt with spec
ete, including
ired :W.C. p
2.000 | tern & C.P. cials of sta g painting of an with ISI | flush bend valued marked white Total Deducted Net Total | with fittings and moso brackets, c e solid plas al Quantity d Quantity al Quantity | & C.I. brack quito proof utting and mitic seat and 2.000 eac 0.000 eac 2.000 eac | tets, 40 mr
coupling c
naking goo
lid
h | | | Providing and fixing will litre low level white vit flush bend, overflow approved municipal dethe walls and floors where the walls and floors will be are wall are the walls wall | reous china
arrangeme
esign comple
nerever requ | flushing cist
nt with spec
ete, including
ired :W.C. p
2.000 | tern & C.P. cials of sta g painting of an with ISI | flush bend value of the fittings and marked white the fittings and marked white the fittings are the fittings and marked white the fittings are ar | with fittings and moso brackets, c e solid plas al Quantity d Quantity al Quantity | & C.I. brack quito proof utting and mitic seat and 2.000 eac 0.000 eac 2.000 eac | tets, 40 mr
coupling c
naking goo
lid
h | | 30 | Providing and fixing will litre low level white vit flush bend, overflow approved municipal de | reous china arrangeme esign comple nerever requ 1 | flushing cist nt with spec ete, including ired :W.C. p 2.000 Say th C.I. brack ainting of fit | tern & C.P. cials of sta g painting of an with ISI 2.000 each ets, 15 mm tings and b | flush bend vindard make fittings and marked white Total Deducted Rs 6020. C.P. brass parackets, currents. | with fittings and mosc brackets, c e solid plas al Quantity d Quantity 57 / each billar taps, 3 | & C.I. brack quito proof utting and mic seat and 2.000 2.000 eac 2.000 eac Rs 12 2 mm C.P. It making goo | tets, 40 mr
coupling conaking goo
lid
the
the
corass wast
d the wall | | | Total Quantity | 2.000 each | |----|---
---| | | Total Deducted Quantity | 0.000 each | | | Net Total Quantity | 2.000 each | | | Say 2.000 each @ Rs 2746.10 / each | Rs 5492.20 | | 31 | 50.18.7.2.2 Providing and fixing PVC pipes, fittings including fixing the pipe with clamps a includes jointing of pipes & fittings with one step PVC solvent cement and testin per direction of Engineer -in-Charge 20 mm dia 10 Kgf/cm2- Internal work - Exp | g of joints complete a | | | 1 50.000 | 50.000 | | | Total Quantity | 50.000 metre | | | Total Deducted Quantity | 0.000 metre | | | Net Total Quantity | 50.000 metre | | | Say 50.000 metre @ Rs 169.07 / metre | Rs 8453.50 | | | includes jointing of pipes & fittings with one step PVC solvent cement and testing | a ot inints complete a | | | per direction of Engineer-in-Charge 32 mm dia 10Kgf/cm2- Internal work - Expo | • • • | | | per direction of Engineer-in-Charge 32 mm dia 10Kgf/cm2- Internal work - Expo | sed on wall 50.000 | | | per direction of Engineer-in-Charge 32 mm dia 10Kgf/cm2- Internal work - Expo 1 50.000 Total Quantity | 50.000 solution 50.000 metre | | | per direction of Engineer-in-Charge 32 mm dia 10Kgf/cm2- Internal work - Expo 1 50.000 Total Quantity Other Engineering Organization Quantity | 50.000 solution 50.000 metre 0.000 metre | | | per direction of Engineer-in-Charge 32 mm dia 10Kgf/cm2- Internal work - Expo 1 50.000 Total Quantity Other Engineering Organia Deducted Quantity Net Total Quantity | 50.000 setre 0.000 metre 50.000 metre 50.000 metre | | | per direction of Engineer-in-Charge 32 mm dia 10Kgf/cm2- Internal work - Expo 1 50.000 Total Quantity Other Engineering Organization Quantity | 50.000 solution 50.000 metre 0.000 metre | | 33 | per direction of Engineer-in-Charge 32 mm dia 10Kgf/cm2- Internal work - Expo 1 50.000 Total Quantity Other Engineering Organia Deducted Quantity Net Total Quantity | 50.000 setre 0.000 metre 50.000 metre 50.000 metre Rs 11705.50 | | 33 | per direction of Engineer-in-Charge 32 mm dia 10Kgf/cm2- Internal work - Expo 1 50.000 Total Quantity Other Engineering Ortotal Deducted Quantity Net Total Quantity Say 50.000 metre @ Rs 234.11 / metre 50.18.9.22.4 Providing and fixing PVC moulded fittings/ accessories for Rigid PVC pipes, included | 50.000 setre 0.000 metre 50.000 metre 50.000 metre Rs 11705.50 | | 33 | per direction of Engineer-in-Charge 32 mm dia 10Kgf/cm2- Internal work - Expo 1 50.000 Total Quantity Other Engineering Ortotal Deducted Quantity Net Total Quantity Say 50.000 metre @ Rs 234.11 / metre 50.18.9.22.4 Providing and fixing PVC moulded fittings/ accessories for Rigid PVC pipes, inclusionly solvent cement- 110 mm dia Bend | 50.000 setre 0.000 metre 50.000 metre 50.000 metre Rs 11705.50 uding jointing with PV | | 33 | per direction of Engineer-in-Charge 32 mm dia 10Kgf/cm2- Internal work - Expo 1 50.000 Total Quantity Net Total Quantity Say 50.000 metre @ Rs 234.11 / metre 50.18.9.22.4 Providing and fixing PVC moulded fittings/ accessories for Rigid PVC pipes, inclusionly solvent cement- 110 mm dia Bend 1 15.000 | 50.000 50.000 metre 0.000 metre 50.000 metre Rs 11705.50 15.000 | | 33 | per direction of Engineer-in-Charge 32 mm dia 10Kgf/cm2- Internal work - Expo 1 50.000 Total Quantity Other Engineering Ortification Deducted Quantity Net Total Quantity Net Total Quantity Say 50.000 metre @ Rs 234.11 / metre 50.18.9.22.4 Providing and fixing PVC moulded fittings/ accessories for Rigid PVC pipes, inclusion solvent cement- 110 mm dia Bend 1 15.000 Total Quantity | 50.000 50.000 metre 0.000 metre 50.000 metre Rs 11705.50 15.000 15.000 no | | 33 | per direction of Engineer-in-Charge 32 mm dia 10Kgf/cm2- Internal work - Expo 1 50.000 Total Quantity Net Total Quantity Say 50.000 metre @ Rs 234.11 / metre 50.18.9.22.4 Providing and fixing PVC moulded fittings/ accessories for Rigid PVC pipes, inclusion solvent cement- 110 mm dia Bend 1 15.000 Total Quantity Total Quantity Total Deducted Quantity | 50.000 50.000 metre 0.000 metre 50.000 metre Fs 11705.50 15.000 15.000 no 0.000 no 0.000 no 15.000 15.000 no | | 33 | per direction of Engineer-in-Charge 32 mm dia 10Kgf/cm2- Internal work - Expo 1 50.000 Total Quantity Other Engineering Or Total Deducted Quantity Net Total Quantity Say 50.000 metre @ Rs 234.11 / metre 50.18.9.22.4 Providing and fixing PVC moulded fittings/ accessories for Rigid PVC pipes, inclusion solvent cement- 110 mm dia Bend 1 15.000 Total Quantity Total Quantity Total Deducted Quantity Net Total Quantity | 50.000 50.000 metre 0.000 metre 50.000 metre Fs 11705.50 15.000 no 15.000 no 15.000 no Rs 2311.35 ank :ISI 12701 market | | | per direction of Engineer-in-Charge 32 mm dia 10Kgf/cm2- Internal work - Expo | 50.000 50.000 metre 0.000 metre 50.000 metre 50.000 metre Rs 11705.50 15.000 no 15.000 no 15.000 no Rs 2311.35 ank :ISI 12701 market | | | | | | To | otal Deducte | d Quantity | 0.000 Litre |) | |-------|---
--|--|---|--|--|--|--| | | | | | | Net Tota | al Quantity | 1000.000 | Litre | | | | | Say | / 1000.000 I | Litre @ Rs 9 | .50 / Litre | Rs 95 | 00.00 | | SI No | Description | No | L | В | D | CF | Quantity | Remark | | | | 5 A | ppendix E- | Electrical w | orks | | | | | 1 | 90.14.1.2 Fabrication, supply, co and vermin proof, cub complying to IS 8623. assembly as per form 4 and requirement, with compartments, earthing for mounting meters, rechamber and cable allected CRCA sheet alone be fabrication of panel assemble panel board including 1.6mm CRCA sheet, p | cicle type Modernical sections of IS 8623 front and regular the doors elays, indically, powder coused for the sembly. The partitions, for the sembly of IS 100 for the partitions, for the sembly of IS 100 | IV panel boation of full attention of full at a cess fausing 4 sq mation lamps, coating the attention e measurme olding, shroustion of shrousting through the second of th | pard compri
y partitioned
amendment
acility, bus to
him braided of
bus bar inte
assembly aft
. Angles/ fla
ents will be to
uding etc. So | sing of the d, dust and ats) using Clar chamber copper conduction are subjecting aken the are upply and fa | following covermin processors, hinged ductor, providetc, detaching to 7 tank pangles etc sea of the coverming to 2000. | omponents/ of enclosures per appro- doors for all siding necessarable covers process etc and the unique to uni | devices e for pan ved desig switch gea ary cut-ou for bus ba as require used for the | | | 90.14.1.2 | 8.5 | | lg bass irai | 2.25.16 | L | 8.500 | | | | | 100 | | | Tota | al Quantity | 8.500 sqm | 1 | | | | | Villa Bari | To | otal Deducte | | 0.000 sqm | | | | 0 | ther Er | ngineeri | | anisatio | al Quantity | 8.500 sqm | | | | | | Sa | y 8.500 sqm | @ Rs 2377 | 7.26 / sqm | Rs 20 | | | 2 | 90.14.4
Supply and fabrication
steel channel (ISMC) | conveyance | e and installa | ation of base | e frame of pa | anel board u | using 75 x 40 |) mm rolle | | | 90.14.4 | 4 | | | | | 4.000 | | | | | | | | Tota | al Quantity | 4.000 met | re | | | | | | To | tal Deducte | d Quantity | 0.000 met | re | | | | | | | Net Tota | | 4 000 | | | | | | | | INCL TOL | al Quantity | 4.000 met | re | | | | | Say | 4.000 metre | @ Rs 953.5 | | | re
3 14.32 | | 3 | 90.14.10.11 Supply, conveyance conforming to IS 139 required.125A, 35/36 k release with overload s | 47 suitable
A (Ics=100 | the following for 440 V | ng types &
, 50 Hz, A0
le, current li | @ Rs 953.5 current ra C supply in | ted control
the existin | Rs 38 | witchgea | | 3 | Supply, conveyance conforming to IS 139 | 47 suitable
A (Ics=100 | the following for 440 V | ng types &
, 50 Hz, A0
le, current li | @ Rs 953.5 current ra C supply in | ted control
the existin | Rs 38 | witchgea | | | | | | Tota | I Deducted | Quantity | 0.000 no | | |---|-------------------------------|--|--------------------|--------------|-------------|-------------|-------------|------------| | | | | | | Net Total | Quantity | 2.000 no | | | | | | Say 2 | 2.000 no @ | @ Rs 17713 | .50 / no | Rs 35 | 427.00 | | 4 | suitable for induc | xing 5 amps to 3
stive load of follow
ng etc. as require | ving poles in the | existing | MCB DB co | | | | | | 2.10.5 | 7 | | | | | 7.000 | | | |
| | | | Total | Quantity | 7.000 ead | h | | | | | | Tota | I Deducted | Quantity | 0.000 ead | ch | | | | | /A_6 | | Net Total | Quantity | 7.000 eac | h | | | | | Say 7.00 | 0 each @ | Rs 1167.7 | 4 / each | Rs 8 | 174.18 | | 5 | 90.14.11.17
MCCB Accessori | esSupply and fixir | ng kastel interloc | k kit up to | 250A. | | T | | | | 90.14.11.17 | 2 | ANDER | KAI | -21 | | 2.000 | | | | | 161 | | 554 | Total | Quantity | 2.000 no | | | | | 400 | | Tota | I Deducted | Quantity | 0.000 no | | | | | | Salara a | 1227 | Net Total | Quantity | 2.000 no | | | | | Other En | gineerisay | 2.000 no | @ Rs 3020 | .65 / no | Rs 6 | 041.30 | | 6 | 90.14.11.2
MCCB Accessori | esSupply and fixir | ng one number e | earth fault | Relay up to | 125A to 2 | 200A with C | вст. | | | 90.14.11.2 | 1 - | 1 | | | | 1.000 | | | | | | | | Total | Quantity | 1.000 no | | | | | | | Tota | I Deducted | Quantity | 0.000 no | | | | | | | | Net Total | Quantity | 1.000 no | | | | | | Say | 1.000 no | @ Rs 3503 | .52 / no | Rs 3 | 503.52 | | 7 | 90.14.11.5
MCCB Accessori | esSupply and fixir | ng 100 - 200A ea | arth fault n | nodule of M | CCB with | builtin CBC | Т. | | | 90.14.11.5 | 1 | | | | | 1.000 | | | | | | | | Total | Quantity | 1.000 no | | | | | | | Tota | I Deducted | Quantity | 0.000 no | | | | | | | | Net Total | Quantity | 1.000 no | | | | | | Say | 1.000 no | @ Rs 4685 | .52 / no | Rs 4 | 685.52 | | 8 | 90.14.2.2
Supply and provi | ding 3mm SMC s | heet as shroudii | ng for bus | interconne | ction / ter | minations e | tc. includ | | | required nut & bolt | etc. | <u> </u> | | | | T | | |----|--|------------------|--------------|-----------------------|--------------------|--------------|---------------|-----------| | | 90.14.2.2 | 0.75 | | | | | 0.750 | | | | | | | | Tota | al Quantity | 0.750 sqn | า | | | | | | То | tal Deducte | d Quantity | 0.000 sqn | า | | | | | | | Net Tota | al Quantity | 0.750 sqn | ı | | | | | Sa | y 0.750 sqm | @ Rs 3932 | 2.69 / sqm | Rs 29 | 949.52 | | 9 | 90.14.3.3
Supply and providi
section PVC beedi | | | eoprene gas | sket in the p | anel boardS | Supply and p | providing | | | 90.14.3.3 | 20 | | | | | 20.000 | | | | | | B | B. | Tota | al Quantity | 20.000 me | etre | | | | | | То | tal Deducte | d Quantity | 0.000 met | re | | | | | 43 6 | | Net Tota | al Quantity | 20.000 me | etre | | | | | Say | y 20.000 met | tre @ Rs 4.3 | 31 / metre | Rs 8 | 36.20 | | 10 | 90.14.6 Supply and providi suitable size nut & | | | | | | rts in the bu | s cham | | | 90.14.6 | 600 | 1200 | MEN ZU | | | 600.000 | | | | | Other E | ngineeri | ng Orga | anisa To ta | al Quantity | 600.000 C | cum cm | | | | | | То | tal Deducte | d Quantity | 0.000 Cur | n cm | | | | | K | | Net Tota | al Quantity | 600.000 C | cum cm | | | | | Say 600.0 | 000 Cum cm | @ Rs 6.00 | / Cum cm | Rs 36 | 600.00 | | 11 | 90.14.7
Supply and providi | ng copper earth | bus in the p | panel board | I | | | | | | 90.14.7 | 500 | | | | | 500.000 | | | | | | | | Tota | al Quantity | 500.000 C | cum cm | | | | | | То | tal Deducte | d Quantity | 0.000 Cur | n cm | | | | | | | Net Tota | al Quantity | 500.000 C | um cm | | | | / Cum cm | Rs 30 | 00.00 | | | | | | | od128845/2019_20 |)20 | | | ting panel be | ord and air | vina connect | | | 12 | Supply and installa | | cator (R,Y,E | in the exist | ing paner bu | baru anu giv | | ion | | 12 | Supply and installa od128845/2019_20 | tion of LED indi | cator (R,Y,E | 3) in the exist | ling paner bo | Dard and giv | 3.000 | ion | | 12 | | tion of LED indi | cator (R,Y,E | 3) in the exist | | al Quantity | | | | 12 | | tion of LED indi | cator (R,Y,E | | | al Quantity | 3.000 | , | | | | | Say | 3.000 Da | y @ Rs 194.23 / Day | Rs 5 | 82.69 | | |----|--|---|--|--
--|--|---|--| | 13 | od128846/2019_2020
Supply and installati
connection | | multi function | meter (V | /,A,F) in the existing | panel board | and givin | | | | od128846/2019_202 | 1 | | | | 1.000 | | | | | | | | | Total Quantity | 1.000 ead | h | | | | | | | То | tal Deducted Quantity | 0.000 ead | :h | | | | | | | | Net Total Quantity | 1.000 ead | :h | | | | | | Say 1.0 | 000 each | @ Rs 1797.32 / each | Rs 1 | 797.32 | | | 14 | od128848/2019_2020
Supply and installation | | rve SP MCB in | the existi | ing panel board and gi | ving connect | ion. | | | | od128848/2019_2020 | 3 | JAME | AL | | 3.000 | | | | | | | E. L MA | 183 | Total Quantity | 3.000 ead | :h | | | | | 610 | N. A. | То | tal Deducted Quantity | 0.000 ead | ch | | | | | 12 | NE | KA | Net Total Quantity | 3.000 ead | ch | | | | Net Total Quantity 3.000 each | | | | | | | | | 15 | 90.11.1.10 Supply and installation MCB DB including co | | teel, phosphat | tised and | • | ermin proof e | | | | 15 | Supply and installation | opper /brass
wall using sui | teel, phosphat
bus bar, neutra
table anchor bo | tised and
al link, ea
olts or fixe | painted, dust and ve
arth bus and DIN rail
ed in recess including | ermin proof e
suitable for
cutting hole | enclosure
fixing MCI
on the wal | | | 15 | Supply and installation MCB DB including consistent is seen to be making good the dame. | opper /brass
wall using sui | teel, phosphat
bus bar, neutra
table anchor bo | tised and
al link, ea
olts or fixe | painted, dust and ve
arth bus and DIN rail
ed in recess including | ermin proof e
suitable for
cutting hole | enclosure
fixing MC
on the wa | | | 15 | Supply and installation MCB DB including consistent is including consistent in the second second installation in the second is included in the second | opper /brass
wall using sui
nages, colour | teel, phosphat
bus bar, neutra
table anchor bo | tised and
al link, ea
olts or fixe | painted, dust and ve
arth bus and DIN rail
ed in recess including | ermin proof e
suitable for
cutting hole
phase doub | enclosure
fixing MC
on the wa
le cover (| | | 15 | Supply and installation MCB DB including consistent is including consistent in the second second installation in the second is included in the second | opper /brass
wall using sui
nages, colour | teel, phosphat
bus bar, neutra
table anchor bo | tised and
ral link, ea
olts or fixe
as require | painted, dust and verarth bus and DIN railed in recess including d4 way (8+12) - three | ermin proof e
suitable for
cutting hole
phase doub
1.000 | enclosure
fixing MC
on the wa
le cover (| | | 15 | Supply and installation MCB DB including consistent is including consistent in the second second installation in the second is included in the second | opper /brass
wall using sui
nages, colour | teel, phosphat
bus bar, neutra
table anchor bo | tised and
ral link, ea
olts or fixe
as require | painted, dust and verarth bus and DIN railed in recess including ed4 way (8+12) - three | ermin proof e
suitable for
cutting hole
phase doub
1.000
1.000 eac | enclosure
fixing MC
on the wa
le cover (| | | 15 | Supply and installation MCB DB including consistent is including consistent in the second second installation in the second is included in the second | opper /brass
wall using sui
nages, colour | teel, phosphat
bus bar, neutra
table anchor bo
washing etc. a | tised and
ral link, ea
olts or fixe
as require | painted, dust and verarth bus and DIN railed in recess including ad4 way (8+12) - three Total Quantity | ermin proof e
suitable for
cutting hole
phase doub
1.000
1.000 eac
1.000 eac | enclosure
fixing MC
on the wa
le cover (| | | 15 | Supply and installation MCB DB including consistent is including consistent in the second second installation in the second is included in the second | opper /brass wall using sui nages, colour 1 5 amps to 3 load of follow | teel, phosphat bus bar, neutra table anchor bo washing etc. a Say 1.0 32 amps rating ying poles in the | tised and ral link, ear olts or fixe as require | painted, dust and verarth bus and DIN rail ed in recess including ed4 way (8+12) - three Total Quantity Net Total Quantity Net Total Quantity Rs 2759.17 / each 5 volts, "C" curve, near the control of the control of the control of the control of the curve, near the control of the curve, near the control of the curve, near cur | ermin proof esuitable for cutting hole phase doub 1.000 1.000 eac 1.000 eac 1.000 eac Rs 2 | enclosure fixing MC on the wa le cover (| | | | Supply and installation MCB DB including consistency isolator etc. fixed on with the making good the dame 42/43) 90.11.1.10 2.10.1 Supplying and fixing suitable for inductive | opper /brass wall using sui nages, colour 1 5 amps to 3 load of follow | teel, phosphat bus bar, neutra table anchor bo washing etc. a Say 1.0 32 amps rating ying poles in the | tised and ral link, ear olts or fixe as require | painted, dust and verarth bus and DIN rail ed in recess including ed4 way (8+12) - three Total Quantity Net Total Quantity Net Total Quantity Rs 2759.17 / each 5 volts, "C" curve, near the control of the control of the control of the control of the curve, near the control of the curve, near the control of the curve, near cur | ermin proof esuitable for cutting hole phase doub 1.000 1.000 eac 1.000 eac 1.000 eac Rs 2 | enclosure fixing MC on the wa le cover (ch | | | | Supply and installation MCB DB including consistency isolator etc. fixed on with the making good the dame 42/43) 90.11.1.10 2.10.1 Supplying and fixing suitable for inductive and commissioning experience. | poper /brass wall using sui nages, colour 1 5 amps to 3 load of follow tc. as require | teel, phosphat bus bar, neutra table anchor bo washing etc. a Say 1.0 32 amps rating ying poles in the | tised and ral link, ear olts or fixe as require | painted, dust and verarth bus and DIN rail ed in recess including ed4 way (8+12) - three Total Quantity Net Total Quantity Net Total Quantity Rs 2759.17 / each 5 volts, "C" curve, near the control of the control of the control of the control of the curve, near the control of the curve, near the control of the curve, near cur | ermin proof esuitable for cutting hole phase doub 1.000 1.000 eac 0.000 eac 1.000 eac Rs 2 | enclosure
fixing MC
on the wa
ele cover (
ch
ch
ch
759.17 | | | | Supply and installation MCB DB including consistency isolator etc. fixed on with the making good the dame 42/43) 90.11.1.10 2.10.1 Supplying and fixing suitable for inductive and commissioning experience. | poper /brass wall using sui nages, colour 1 5 amps to 3 load of follow tc. as require | teel, phosphat bus bar, neutra table anchor bo washing etc. a Say 1.0 32 amps rating ying poles in the | tised and ral link, ear olts or fixed as required to the control of o | painted, dust and verarth bus and DIN railed in recess including ad4 way (8+12) - three Total Quantity Net Total Quantity Net Total Quantity Rs 2759.17 / each 5 volts, "C" curve, in g MCB DB complete verage. | ermin proof e suitable for cutting hole phase doub 1.000 1.000 eac 0.000 eac 1.000 eac Rs 2 | enclosure
fixing MC
on the wa
ele cover (
ch
ch
ch
759.17 | | | | Supply and installation MCB DB including consistency isolator etc. fixed on with the making good the dame 42/43) 90.11.1.10 2.10.1 Supplying and fixing suitable for inductive and commissioning experience. | poper /brass wall using sui nages, colour 1 5 amps to 3 load of follow tc. as require | teel,
phosphat bus bar, neutra table anchor bo washing etc. a Say 1.0 32 amps rating ying poles in the | tised and ral link, ear olts or fixed as required to the control of o | painted, dust and verarth bus and DIN railed in recess including ad4 way (8+12) - three Total Quantity Net Total Quantity Rs 2759.17 / each 5 volts, "C" curve, in g MCB DB complete verage and the | ermin proof e suitable for cutting hole phase doub 1.000 1.000 eac 0.000 eac 1.000 eac 1.000 eac 8.000 8.000 eac 0.000 eac | enclosure fixing MCloon the walle cover (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | | | | 2.13.1
Supplying and fixi
connections, testi | • | | | | he existing | MCB DB co | omplete wi | | | | |----|---|--|--------------------|---|---|--|--|--|--|--|--| | | 2.13.1 | 1 | | | | | 1.000 | | | | | | | | | | | Tota | al Quantity | 1.000 ead | ch | | | | | | | | | To | tal Deducte | d Quantity | 0.000 ead | ch | | | | | | | | | | Net Tota | al Quantity | 1.000 ead | ch | | | | | | | | Sa | ay 1.000 each | n @ Rs 874 | .17 / each | Rs 874.17 | | | | | | 18 | 2.15.2 Supplying and fix circuit breaker (Ficomplete with complete | RCCB), having | a sensitivit | y current up | to 300 milli | amperes in | the existir | | | | | | | 2.15.2 | 1 | -1 | | | | 1.000 | | | | | | | | | 33 (| W W | Tota | al Quantity | 1.000 ead | ch | | | | | | | (1) | | To | tal Deducte | d Quantity | 0.000 ead | ch | | | | | | | 1 A | TOP | | Net Tota | al Quantity | 1.000 ead | ch | | | | | | | 16/42 | Say | / 1.000 each | @ Rs 2792 | .89 / each | Rs 2 | 792.89 | | | | | | Supply, laying an | 0 1 7 | | | | | | • | | | | | | Supply, laying an cable, 1.1 KV grand not exceeding 600 factory made clam | de of the followi
cms, making goo | ng sizes us | ing clamps n | oted along | with the cal | oles, spacin | g of clam | | | | | | cable, 1.1 KV gra-
not exceeding 60d
factory made clam | de of the followi
cms, making goo
np | ng sizes us | ing clamps n | oted along
washing etc | with the cal | oles, spacin
d.4 core 10 | g of clam
sq mm w | | | | | | cable, 1.1 KV gra-
not exceeding 60d
factory made clam | de of the followi
cms, making goo
np | ng sizes us | ing clamps nages , colour | oted along
washing etc | with the cat
c. as require
al Quantity | bles, spacin
d.4 core 10
500.000 | ng of clam
sq mm w | | | | | | cable, 1.1 KV gra-
not exceeding 60d
factory made clam | de of the followi
cms, making goo
np | ng sizes us | ing clamps nages , colour | oted along
washing etc
Tota
stal Deducte | with the cat
c. as require
al Quantity | 500.000 r | sq mm w | | | | | | cable, 1.1 KV gra-
not exceeding 60d
factory made clam | de of the followi
cms, making goo
np | ng sizes us | ing clamps nages , colour | oted along washing etc Tota stal Deducte Net Tota | with the cat
c. as require
al Quantity
ad Quantity | 500.000 r 500.000 r 500.000 r | sq mm w | | | | | 20 | cable, 1.1 KV gra-
not exceeding 60d
factory made clam | de of the following good making makin | Say 50 ng sizes us | ing clamps nages , colour To 00.000 metre insulated and ing clamps nages | Total Deducte Net Total @ Rs 227. | with the calconate as required al Quantity al Quantity al Quantity al Quantity at the darmo with the calconate at the darmo | 500.000 r 500.000 r 500.000 r 500.000 r Rs 11 | metre tre metre 3660.00 nium pow | | | | | 20 | cable, 1.1 KV granot exceeding 60c factory made clam 90.12.7.40 90.12.7.28 Supply, laying an cable, 1.1 KV granot exceeding 60c | de of the following good making makin | Say 50 ng sizes us | ing clamps nages , colour To 00.000 metre insulated and ing clamps nages | Total Deducte Net Total @ Rs 227. | with the calconate as required al Quantity al Quantity al Quantity al Quantity at the darmo with the calconate at the darmo | 500.000 r 500.000 r 500.000 r 500.000 r Rs 11 | metre tre metre 3660.00 nium pow | | | | | 20 | cable, 1.1 KV granot exceeding 60c factory made clam 90.12.7.40 90.12.7.28 Supply, laying an cable, 1.1 KV granot exceeding 60c with factory made | de of the following good good the following good good good good good good good go | Say 50 ng sizes us | ing clamps nages , colour To 00.000 metre insulated and ing clamps nages | Total Deducted Net Total Deducted @ Rs 227. | with the calconate as required al Quantity al Quantity al Quantity al Quantity at the darmo with the calconate at the darmo | 500.000 r 500.000 r 500.000 r 500.000 r Rs 11 ured alumi ples, spacin red.3.5 cor | metre tre metre 3660.00 nium pow g of clam | | | | | 20 | cable, 1.1 KV granot exceeding 60c factory made clam 90.12.7.40 90.12.7.28 Supply, laying an cable, 1.1 KV granot exceeding 60c with factory made | de of the following good good the following good good good good good good good go | Say 50 ng sizes us | To 00.000 metre insulated aning clamps nages, colour | Total Deducted Net Total Deducted @ Rs 227. | with the cator as required al Quantity and Quantity and Quantity and Quantity are athed armowith the cator as required at Quantity and Quantity and Quantity and Quantity and Quantity | 500.000 r 500.000 r 500.000 r 500.000 r 8s 11 ured alumi bles, spacin red.3.5 cor | metre tre metre 3660.00 nium pow g of clam e 35 sq n | | | | | 20 | cable, 1.1 KV granot exceeding 60c factory made clam 90.12.7.40 90.12.7.28 Supply, laying an cable, 1.1 KV granot exceeding 60c with
factory made | de of the following good good the following good good good good good good good go | Say 50 ng sizes us | To 00.000 metre insulated aning clamps nages, colour | Total Deducted along washing etc. Net Total Deducted along rewashing etc. Total Deducted along rewashing etc. | with the cator as required al Quantity and Quantity and Quantity and Quantity are athed armowith the cator as required at Quantity and Quantity and Quantity and Quantity and Quantity | 500.000 r 500.000 r 500.000 r 500.000 r 8s 11 ured alumi bles, spacin red.3.5 cor 50.000 m | metre tre metre 3660.00 nium powers of clame as sq m | | | | | | 9.1.21 Supplying and make size of PVC insula | ated and PVC | sheathed | - | • | | • | | |----|---|---|--------------|---|--|--|---|---| | | 9.1.21 | 4 sq. mm | mm) | | | | 4.000 | | | | 5.1.21 | | | | Tot | al Quantity | 4.000 set | | | | | | | To | | ed Quantity | 0.000 set | | | | | | | | | al Quantity | 4.000 set | | | | | | | Say 4.000 s | | | | 478.36 | | 22 | 9.1.32
Supplying and mak
size of PVC insula
required.4 X 10 so | ated and PVC | sheathed | 100 | • | | J | | | | 9.1.32 | 30 | 8.80 | W 85 | | | 30.000 | | | | | 61 | W. P. | An N | Tot | al Quantity | 30.000 se | et | | | | 15 | 4 1570 | То | tal Deducte | ed Quantity | 0.000 set | | | | | 1/81 | 14/2 | | Net Tot | tal Quantity | 30.000 se | et | | | | | | | | | | | | 23 | 4.1.2 | 460 | | Say 30.000 s | | 66.05 / set | Rs 7 | 981.50 | | 23 | Supplying and instate than 17.5%, in consuspenders including 1.6 mm thickness | nvenient secting bolts & nuts | ions, joined | orated pre-pa | set @ Rs 2 | cable trays v | withperforati
n the ceilin
width X 50 | on not m
g with N | | 23 | Supplying and insta
than 17.5%, in co-
suspenders including | nvenient secti | ions, joined | orated pre-pa | set @ Rs 2
inted M.S.
ctors, sus
c as requir | cable trays voended from
ed.150 mm | withperforation the ceilin width X 50 | on not m
g with N
mm dept | | 23 | Supplying and instate than 17.5%, in consuspenders including 1.6 mm thickness | nvenient secting bolts & nuts | ions, joined | prated pre-pa
with connections
uspenders et | set @ Rs 2
inted M.S.
ctors, sus
c as requir | cable trays vocable voca | withperforation the ceilin width X 50 50.000 m | on not m
g with M
mm dept
etre | | 23 | Supplying and instate than 17.5%, in consuspenders including 1.6 mm thickness | nvenient secting bolts & nuts | ions, joined | prated pre-pa
with connections
uspenders et | inted M.S.
ctors, sus
c as requir | cable trays vocable voca | withperforation the ceilin width X 50 50.000 m 0.000 me | on not m
g with M
mm dept
etre | | 23 | Supplying and instate than 17.5%, in consuspenders including 1.6 mm thickness | nvenient secting bolts & nuts | ions, joined | prated pre-pa
with connections
uspenders et | inted M.S.
ctors, susp
c as requir
Tot
tal Deducte
Net Tot | cable trays vocable voca | withperforation the ceilin width X 50 50.000 m 0.000 me 50.000 m | on not m g with N mm dept etre tre etre | | 23 | Supplying and instathan 17.5%, in consuspenders including 1.6 mm thickness 4.1.2 4.1.2 4.1.3 Supplying and instathan 17.5%, in consuspenders including suspenders including than 1.5%. | nvenient secting bolts & nuts 50 alling following nvenient sections | Say 5 | To 50.000 metre prated pre-pa | Total Deducte Net Total Rs 515. Inted M.S. | cable trays vocable voca | withperforation the ceilin width X 50 50.000 m 0.000 me 50.000 m Rs 25 withperforation the ceilin | on not m g with N mm dept etre tre etre 5753.50 on not m g with N | | | Supplying and instathan 17.5%, in consuspenders including 1.6 mm thickness 4.1.2 4.1.3 Supplying and instathan 17.5%, in consuspenders including 1.6 mm thickness | nvenient secting bolts & nuts 50 alling following nvenient sections | Say 5 | To 50.000 metre prated pre-pa | Total Deducte Net Total Rs 515. Inted M.S. | cable trays vocable voca | withperforation the ceilin width X 50 50.000 m 0.000 me 50.000 m Rs 25 withperforation the ceilin width X 50 | on not m g with N mm dept etre tre etre 5753.50 on not m g with N | | | Supplying and instathan 17.5%, in consuspenders including 1.6 mm thickness 4.1.2 4.1.2 4.1.3 Supplying and instathan 17.5%, in consuspenders including suspenders including than 1.5%. | solts & nuts 50 alling following nvenient sections bolts & nuts | Say 5 | To 50.000 metre prated pre-pa | Total Deducte Net Total Deducte Rs 515. Inted M.S. ctors, suspections, suspections, suspections, suspections, suspections, suspections. | cable trays vocable voca | withperforation the ceilin width X 50 50.000 m 0.000 me 50.000 m Rs 25 withperforation the ceilin | on not m g with N mm dept etre tre etre on not m g with N mm dept | | | Supplying and instathan 17.5%, in consuspenders including 1.6 mm thickness 4.1.2 4.1.3 Supplying and instathan 17.5%, in consuspenders including 1.6 mm thickness | solts & nuts 50 alling following nvenient sections bolts & nuts | Say 5 | To 50.000 metre prated pre-pa | roted M.S. ctors, suspect as required M.S. ctors as suspected M.S. ctors, suspected M.S. ctors, suspected as required Total Control of the co | cable trays vocable voca | withperforation the ceilin width X 50 50.000 m 0.000 me 50.000 m Rs 25 withperforation the ceilin width X 50 50.000 | on not m g with N mm dept etre tre etre 5753.50
on not m g with N mm dept etre | | | | | Say 50.000 metre | @ Rs 602.88 | / metre | Rs 301 | 144.00 | |----|--|------------------------|--|-----------------|------------|----------------|--------| | 25 | <u> </u> | with cover plate | mm X 600 mm X 6 ne having locking arrang | | - | | • | | | 5.3 | 5 | | | | 5.000 | | | | | | <u> </u> | Total | Quantity | 5.000 set | | | | | | To | otal Deducted | Quantity | 0.000 set | | | | | | | Net Total | Quantity | 5.000 set | | | | | | Say 5.000 s | et @ Rs 4695 | .88 / set | Rs 234 | 179.40 | | 26 | | _ | tion from earth electro | | | | | | | 5.13 | 30 | X 1250 /X | 1 1 1 | | 30.000 | | | | | 150 | THE WEST | Total | Quantity | 30.000 me | tre | | | | 104 | To | otal Deducted | Quantity | 0.000 metr | е | | | | 7.00 | | Net Total | Quantity | 30.000 me | tre | | | | | Say 30.000 metre | | | Rs 71 | 55.90 | | 27 | 5.17 Providing and fixing 5.17 | | pper wire on surface o | r in recess for | | 30.000 me | | | | | | To | otal Deducted | Quantity | 0.000 metr | ·e | | | | | | Net Total | Quantity | 30.000 me | tre | | | | | Say 30.000 metre | @ Rs 114.02 | ? / metre | Rs 34 | 20.60 | | 28 | od128883/2019_20
Supply and fixing 10 | | sheet steel enclosure | on wall using | suitable s | teel fastners. | | | | od128883/2019_20 | 20 1 | | | | 1.000 | | | | | | | Total | Quantity | 1.000 each | า | | | | | To | otal Deducted | Quantity | 0.000 each | 1 | | | | | | Net Total | Quantity | 1.000 each | า | | | | | Say 1.000 each | @ Rs 5430.3 | 6 / each | Rs 54 | 30.36 | | 29 | od128886/2019_202 | 20
e base with fuse | | | | | | | | od128886/2019_2020 | 3 | | | | | 3.000 | | |----|---|---|---------------------------------------|--|---|-----------------------|-----------------------------|------------------------| | | | | | | Tota | al Quantity | 3.000 eac | h | | | | | | To | tal Deducte | d Quantity | 0.000 eac | h | | | | | | | Net Tota | al Quantity | 3.000 eac | h | | | | | Sa | y 3.000 each | n @ Rs 548 | .41 / each | Rs 16 | 645.23 | | 30 | od128905/2019_2020
100 A, 415 V, 2 way ne | utral link m | ounted on D | DMC/ SMC ba | ase. | | | | | | od128905/2019_2020 | 1 | | | | | 1.000 | | | | | | | | Tota | al Quantity | 1.000 eac | h | | | | | | To | tal Deducte | d Quantity | 0.000 eac | h | | | | | /Gi | E2J/ | Net Tota | al Quantity | 1.000 eac | h | | | | | Sa | y 1.000 each | n @ Rs 343 | .98 / each | Rs 3 | 43.98 | | | good the damages cold
od128913/2019_2020 | our washing
1 | etc. as rec | quired. | | | 1.000 | | | | | 15180 | | 20275 | | | 1 000 | | | | | | MOTOR | an of Par | Tota | al Quantity | 1.000 eac | h | | | 0 | ther Er | ngineer | ing Or b 9 | tal Deducte | d Quantity | 0.000 eac | h | | | | | | T | Net Tota | al Quantity | 1.000 eac | h | | | | P - 1 | Say | 1.000 each | @ Rs 4814 | .18 / each | Rs 48 | 314.18 | | 32 | od128948/2019_2020 Supply, conveyance, i "CUMINS" Model X3.T Coupled, ALternator ra complete with fuel tan CPCB approved factor | AA-G2 Die
ated at 32k
k, Battery, | sel Engine
w/40KVA, 4
Manuel co | developing (
115V, 50Hz,
ntrol panel a | 56BHP at 1
0.8 P, mou
and other s | 500rpm, Wanted on a c | ater cooled,
chanel iron | 4cylinder
base fram | | | od128948/2019_2020 | 1 | | | | | 1.000 | | | | | | | | Tota | al Quantity | 1.000 eac | h | | | | | | То | tal Deducte | d Quantity | 0.000 eac | h | | | | | | | Net Tota | al Quantity | 1.000 eac | h | | | | | Say 1. | .000 each @ | Rs 618843 | .75 / each | Rs 618 | 8843.75 | | 33 | od128952/2019_2020 Supply and providing for length of pipe, as addinecessary supports, supports, supports, supports. | litional exh | naust pipin | | • | • | | | | | MS pipe | | | | ı | | | T | |----|--|-------------|----------------|--|---------------|-------------------------------------|-------------------------------------|----------| | | od128952/2019_2020 | 6 | | | | | 6.000 | | | | | | | | Tot | al Quantity | 6.000 per | metre | | | | | | Тс | tal Deducte | d Quantity | 0.000 per | metre | | | | | | | Net Tot | al Quantity | 6.000 per | metre | | | | 5 | Say 6.000 pe | r metre @ R | s 1169.65 / | per metre | Rs 7 | 017.90 | | 34 | 5.15
Providing and fixing 25 | mm X 5 m | m G.I. strip o | on surface or | in recess for | or connection | ns etc. as re | equired. | | | 5.15 | 100 | | | | | 100.000 | | | | | | | | Tot | al Quantity | 100.000 r | netre | | | | | /Ge | To | tal Deducte | ed Quantity | 0.000 me | tre | | | | | 1.0 | | Net Tot | al Quantity | 100.000 r | netre | | | | | Say 10 | 0.000 metre | @ Rs 169. | 07 / metre | Rs 16 | 907.00 | | | od128964/2019_2020 | ther E | ngineeri
R | | otal Deducte | al Quantity ad Quantity al Quantity | 2.000 ead
0.000 ead
2.000 ead | ch | | | | | Sa | y 2.000 each | | | | 862.38 | | 36 | od128974/2019_2020
Supply and providing 5
fixing it to wall as requi | 0 , | | <u>, </u> | | | | | | | od128974/2019_2020 | 2 | | | | | 2.000 | | | | | | | | Tot | al Quantity | 2.000 ead | h | | | | | | Тс | otal Deducte | ed Quantity | 0.000 ead | ch | | | Net Total Quantity | | | | | | | ch | | | | | Say | 2.000 each | @ Rs 2727 | .80 / each | Rs 5 | 455.60 | | 37 | od129038/2019_2020
Supply, installation, tes | sting and c | ommissionin | g of Solar I | ED lighting | System with | h following a | accessor | | | od129038/2019_2020 | 2 | | | | | 2.000 | | | | | |----|---|---|---|--|---
--|--|---|--|--|--| | | | | | | Tota | al Quantity | 2.000 ead | ch | | | | | | | | | To | tal Deducte | d Quantity | 0.000 ead | h | | | | | | | | | | Net Tota | al Quantity | 2.000 ead | h | | | | | | | | Say 2. | .000 each @ | 2 Rs 54087. | 63 / each | Rs 10 | 8175.26 | | | | | 38 | 90.15.3.5 Supply installation testir mm top diameter, 130 suitable for wind speed 4 nos fixed in existing R | mm bottom
as per IS 8 | n diameter th
75 Part III sir | nickness 3m
ngle arm bra | nm base pla
acket 0.5mt | te dimension | ons of 200x | 200x12 m | | | | | | 90.15.3.5 | 8 | //99 | 1/62 | | | 8.000 | | | | | | | | | C. 1 V | | Tota | al Quantity | 8.000 ead | h | | | | | | | 6 | X. | To | otal Deducte | d Quantity | 0.000 ead | ch | | | | | | | | | | Net Tota | al Quantity | 8.000 ead | :h | | | | | | | 11.30 | 117.00 | SAFEA A | 100 | • | - | | | | | | 39 | 90.15.3.9 Supply installation testir mm top diameter, 155 suitable for wind speed | mm bottom | imissioning o | of Octogaon
nickness 3m | Rs 23200.
al Pole mad
nm base pla | 70 / each e of hot dip | Rs 18 galvanised ons of 250x | 5605.60 GI sheet 250x16 n | | | | | 39 | Supply installation testir mm top diameter, 155 | mm bottom
as per IS 8 | missioning on diameter th | of Octogaon
nickness 3m | Rs 23200. al Pole mad nm base pla acket 0.5mt | 70 / each e of hot dip te dimension | Rs 18 galvanised ons of 250x | 5605.60 GI sheet 250x16 m | | | | | 39 | Supply installation testir
mm top diameter, 155
suitable for wind speed
4 nos fixed in existing R | mm bottom
as per IS 8
CC founda | missioning on diameter th | of Octogaon
nickness 3m | 2 Rs 23200. al Pole mad nm base pla acket 0.5mt | 70 / each e of hot dip te dimension | galvanised ons of 250x onnector fou | GI sheet
250x16 m | | | | | 39 | Supply installation testir
mm top diameter, 155
suitable for wind speed
4 nos fixed in existing R | mm bottom
as per IS 8
CC founda | missioning on diameter th | of Octogaon
nickness 3m
ngle arm bration box etc | 2 Rs 23200. al Pole mad nm base pla acket 0.5mt | 70 / each e of hot dip te dimension including company Meters al Quantity | galvanised ons of 250x onnector fou | GI sheet 250x16 nundation b | | | | | 39 | Supply installation testir
mm top diameter, 155
suitable for wind speed
4 nos fixed in existing R | mm bottom
as per IS 8
CC founda | missioning on diameter th | of Octogaon
nickness 3m
ngle arm bration box etc | Rs 23200. al Pole mad nm base pla acket 0.5mt c, complete Tota otal Deducte | 70 / each e of hot dip te dimension including company Meters al Quantity | galvanised ons of 250x onnector for 2.000 | GI sheet 250x16 n indation b | | | | | 39 | Supply installation testir
mm top diameter, 155
suitable for wind speed
4 nos fixed in existing R | mm bottom
as per IS 8
CC founda | missioning on diameter the 75 Part III sin tion and junc | of Octogaon
nickness 3m
ngle arm braction box etc | Rs 23200. al Pole mad nm base pla acket 0.5mt c, complete Tota otal Deducte | 70 / each e of hot dip te dimension including continuous Meters al Quantity d Quantity al Quantity | galvanised ons of 250x onnector for 2.000 2.000 eac 0.000 eac 2.000 eac | GI sheet 250x16 n indation b | | | | | 40 | Supply installation testir mm top diameter, 155 suitable for wind speed 4 nos fixed in existing R 90.15.3.9 90.15.4.2 Supply Conveyance, in than 105lumen/W 4000 factor greater than 0.95 Powder coated housing RoHS compliant, duly accessible for maintena | stallation, as per IS 8 CC founda 2 stallation, a-6000 K w at full load a,acrylic cowired up fo | Say 2. testing and cith IP 66 prover complete or use on 23c. | To commission tection LED ge protection UN AC support of the Commission Commi | Rs 23200. al Pole made me base placed 0.5mt complete Total Deducte Net Total Deducte Rs 33075. Aning of 36/40 of Chip make on up to 8 Kiless than 10 oply. Driver | 70 / each e of hot dip te dimension including control Meters al Quantity d Quantity al Quantity 70 / each OW LED streech Compartment of the compar | galvanised ons of 250x onnector for 2.000 2.000 eac 0.000 eac 2.000 eac Rs 66 eet light out illed/Nichea inium press actor greate ent should be | GI sheet 250x16 n indation be check the check the check the control of the check the control of the check | | | | | | Supply installation testir mm top diameter, 155 suitable for wind speed 4 nos fixed in existing R 90.15.3.9 90.15.4.2 Supply Conveyance, in than 105lumen/W 4000 factor greater than 0.95 Powder coated housing RoHS compliant, duly accessible for maintenamentioning chip manufa | stallation, as per IS 8 CC founda 2 stallation, a-6000 K w at full load a,acrylic cowired up founce (LM 79 acturer) | Say 2. testing and cith IP 66 prover complete or use on 23c. | To commission tection LED ge protection UN AC support of the Commission Commi | Rs 23200. al Pole made me base placed 0.5mt complete Total Deducte Net Total Deducte Rs 33075. Aning of 36/40 of Chip make on up to 8 Kiless than 10 oply. Driver | 70 / each e of hot dip te dimension including control Meters al Quantity d Quantity al Quantity 70 / each OW LED streech Compartment of the compar | galvanised ons of 250x onnector for 2.000 eac 0.000 eac 2.000 eac Rs 66 eet light ou illed/Nichea inium press actor greate ent should bearty lab to be | GI sheet 250x16 n indation be check the check the check the control of the check the control of the check | | | | | | Supply installation testir mm top diameter, 155 suitable for wind speed 4 nos fixed in existing R 90.15.3.9 90.15.4.2 Supply Conveyance, in than 105lumen/W 4000 factor greater than 0.95 Powder coated housing RoHS compliant, duly accessible for maintena |
stallation, as per IS 8 CC founda 2 stallation, a-6000 K w at full load a,acrylic cowired up fo | Say 2. testing and cith IP 66 prover complete or use on 23c. | To commission tection LED ge protection UN AC support of the Commission Commi | al Pole made and base place acket 0.5mt complete. Total Deducte Net Total Deducte Net Total Deducte Of Chip make on up to 8 Kiless than 10 copy. Driver lABL accred | 70 / each e of hot dip te dimension including control Meters al Quantity d Quantity al Quantity 70 / each OW LED streech Compartment of the compar | galvanised ons of 250x onnector for 2.000 2.000 eac 0.000 eac 2.000 eac Rs 66 eet light out illed/Nichea inium press actor greate ent should be | GI sheet 250x16 n indation be check the | | | | | | | | | | Net Total Quantity | 8.000 eac | :h | |----|---|--|---|-------------------------|--|--|---| | | | | Say | 8.000 each | @ Rs 4519.17 / each | Rs 36 | 153.36 | | 41 | copper conduct | ctor single core cab | le in surface
and earthing | / recessed r | ell point with 1.5 sq.r
nedium class PVC cor
with 1.5 sq.mm. FRL | duit,with mod | dular switch | | | 1.10.3 | 5 | | | | 5.000 | | | | | | • | | Total Quantity | 5.000 poi | nt | | | | | | To | otal Deducted Quantity | 0.000 poi | nt | | | | | 100 | | Net Total Quantity | 5.000 poi | nt | | | | | Sa | y 5.000 poin | t @ Rs 992.12 / point | Rs 49 | 960.60 | | | copper conductions sq.mm + 1x1.5 | ctor, single core ca | ble in surfac | | ith the following sizes | conduit as re | | | | 1.14.1 | 10 | 100 | 2027 | | 10.000 | | | | | | | | | | _ 4 | | | | | Market Street | on of 227 | Total Quantity | | | | | | 0/1 E | | | otal Deducted Quantity | 0.000 me | tre | | | | Other E | | ng Org | otal Deducted Quantity On Net Total Quantity | 0.000 me | etre | | 43 | including prov | I fixing suitable size
viding and fixing 3
c. as required. (F | Say 1 e GI box with pin 5/6 am | o.000 metre h modular p | otal Deducted Quantity | 0.000 med 10.000 med Rs 14 t on surface 6 ampsmodialidings). | etre 467.90 or inreces | | 43 | Supplying and including prov | l fixing suitable siz | Say 1 e GI box with pin 5/6 am | o.000 metre h modular p | Net Total Quantity Rs 146.79 / metre late and cover in from socket outlet and 5/2 d in non residentials | 0.000 med 10.000 med Rs 14 t on surface 6 ampsmodiuildings). 1.000 | etre 467.90 or inreces | | 43 | Supplying and including provious connection et | I fixing suitable size
viding and fixing 3
c. as required. (F | Say 1 e GI box with pin 5/6 am | ng Org | Net Total Quantity Rs 146.79 / metre late and cover in from socket outlet and 5/2d in non residentials Total Quantity | 0.000 med 10.000 med Rs 14 t on surface 6 ampsmodialidings). 1.000 1.000 eac | etre 467.90 or inreces ular switch | | 43 | Supplying and including provious connection et | I fixing suitable size
viding and fixing 3
c. as required. (F | Say 1 e GI box with pin 5/6 am | ng Org | Net Total Quantity Rs 146.79 / metre late and cover in from socket outlet and 5/2 d in non residentials | 0.000 med 10.000 med Rs 14 t on surface 6 ampsmodivilidings). 1.000 1.000 each 0.000 each 0.000 each | etre 467.90 or inreces ular switce | | 43 | Supplying and including provious connection et | I fixing suitable size
viding and fixing 3
c. as required. (F | Say 1 e GI box with pin 5/6 am or light plug | ng Org | Net Total Quantity Rs 146.79 / metre late and cover in from socket outlet and 5/ed in non residentialby Total Quantity stal Deducted Quantity | 0.000 med 10.000 med Rs 14 t on surface 6 ampsmodivilidings). 1.000 1.000 eac 1.000 eac | etre 467.90 or inreces ular switch | | 43 | Supplying and including provious connection et 1.31 1.32 Supplying and including provious provious connection et 1.32 | I fixing suitable size | Say 1 e GI box with pin 5/6 amor light plug Sa e GI box with pin 5/6 & 15/6 | ng Org | Net Total Quantity Rs 146.79 / metre late and cover in from socket outlet and 5/ed in non residentialb Total Quantity Net Total Quantity Net Total Quantity | 0.000 med 10.000 med 10.000 med Rs 14 t on surface 6 ampsmodivalidings). 1.000 1.000 each 1.000 each 1.000 each Rs 4 | etre 467.90 or inreces ular switch ch ch ch | | | Supplying and including provious connection et 1.31 1.32 Supplying and including provious provious connection et 1.32 | fixing suitable size viding and fixing 3 c. as required. (Fixing suitable size iding and fixing 6 pixing and fixing 6 pixing and fixing 6 pixing and fixing 6 pixing 6 pixing and fixing 6 pixing pixin | Say 1 e GI box with pin 5/6 amor light plug Sa e GI box with pin 5/6 & 15/6 | ng Org | Net Total Quantity Rs 146.79 / metre late and cover in from socket outlet and 5/ed in non residentials Total Quantity Net Total Quantity Net Total Quantity Net Total Quantity n @ Rs 410.22 / each | 0.000 med 10.000 med 10.000 med Rs 14 t on surface 6 ampsmodivalidings). 1.000 1.000 each 1.000 each 1.000 each Rs 4 | etre 467.90 or inreces ular switch ch ch ch | | | Supplying and including provous suitch, connection et a supplying and including provous switch, switch. | fixing suitable size viding and fixing 3 c. as required. (Fixing suitable size iding and fixing 6 petion etc. as required. | Say 1 e GI box with pin 5/6 amor light plug Sa e GI box with pin 5/6 & 15/6 | ng Org | Net Total Quantity Rs 146.79 / metre late and cover in from socket outlet and 5/ed in non residentials Total Quantity Net Total Quantity Net Total Quantity Net Total Quantity n @ Rs 410.22 / each | 0.000 med 10.000 med 10.000 med Rs 14 t on surface 6 ampsmod wildings). 1.000 1.000 each 0.000 each 1.000 | etre 467.90 or inreces ular switch th th th 10.22 or in reces ps modul | | | | | | | Net Tota | al Quantity | 1.000 eac | :h | | |--------|---|----------------------------|-----------------------------
----------------------------|----------------------------|-----------------------------|---------------------------|---------------------------|--| | | | | Say | y 1.000 eacl | n @ Rs 532 | .10 / each | Rs 5 | 32.10 | | | 45 | 1.12 Wiring for light/ power plug with 2X4 sq. mm FRLS PVC insulated copper conductor single corecable surface/ recessed medium class PVC conduit along with 1 No 4 sq. mm FRLS PVC insulated copper conductor single core cable for loop earthing as required. | | | | | | | | | | | 1.12 | 10 | | | | | 10.000 | | | | | | | | I | Tota | al Quantity | 10.000 m | etre | | | | | | | To | tal Deducte | d Quantity | 0.000 me | tre | | | | | | | | Net Tota | al Quantity | 10.000 m | etre | | | | | | Say 10 | 0.000 metre | @ Rs 220. | 18 / metre | Rs 2 | 201.80 | | | | Supply conveyance, ins
CRCA sheet 0.5mm thi
16/0.20 mm 3 core PV
original wiring and giv | ckness with
/C insulate | all accesso
d and shea | ries and lam
thed round | nps directly of copper cor | on wall and
nductor flex | giving conn
wire or ex | ections wit
tending th | | | | 90.3.19.3 | 5 | | 350 | علاول | S | 5.000 | | | | | | | | | Tota | al Quantity | 5.000 eac | :h | | | | | | no Diene | Тс | tal Deducte | d Quantity | 0.000 eac | :h | | | | 0 | ther En | gineeri | ng Orga | an Net Tota | al Quantity | 5.000 eac | :h | | | | | $D \perp 1$ | Say | 5.000 each | @ Rs 1174 | .12 / each | Rs 5 | 870.60 | | | 47 | od129321/2019_2020
Supply and providing 2 | .5mm thick, | 11KV grade | e, synthetic e | elastometric | fire retarda | nt insulating | sheet | | | | od129321/2019_2020 | 2 | | | | | 2.000 | | | | | | | | | Tota | al Quantity | 2.000 sqn
area | n of door | | | | | | | To | otal Deducte | d Quantity | 0.000 sqn
area | n of door | | | | | | | | Net Tota | al Quantity | 2.000 sqn
area | n of door | | | | Say 2 | 2.000 sqm o | f door area | @ Rs 1669. | 07 / sqm of | door area | Rs 3 | 338.14 | | | SI No | Description | No | L | В | D | CF | Quantity | Remark | | | 6 Арре | endix F- Mechanical Wo | | ation ,Supp
for 6 Nos. o | - | | d SS embe | edded parts | (SS304 L | | | 1 | 85.101
Supply of MS plates co | nfirming to I | S 2062GrB | including co | st of convey | ance charg | es | | | | | | | 2x5) 6 nos s | | <u> </u> | | | | | | | 1 | `` | , | , - | | | | | | | | | | 1 | | | | | |---|---------|-------------|------------------|-------------------|-------------|-----------|----| | Wheel Track- Web | 2*6 | 10.450 | 0.200 | 0.025 | 7850.0 | 4921.950 | | | Wheel Track- Flange | 4*6 | 10.450 | 0.200 | 0.025 | 7850.0 | 9843.900 | | | Wheel track web stiffener | 40*6 | 0.200 | 0.087 | 0.010 | 7850.0 | 327.816 | | | Guide track web | 2*6 | 10.450 | 0.120 | 0.020 | 7850.0 | 2362.536 | | | Suide guide flange | 42*6 | 0.150 | 0.100 | 0.010 | 7850.0 | 296.730 | | | Sill beam - web
stiffener | 24*6 | 0.225 | 0.060 | 0.008 | 7850.0 | 122.084 | | | Stiffener supporting seal seat on sill beam | 2*6 | 0.229 | 0.145 | 0.008 | 7850.0 | 25.024 | | | Base for vertical seal seat on sill beam | 2*6 | 0.140 | 0.900 | 0.008 | 7850.0 | 94.954 | | | Connecting plate on sill beam with vertical seal track | 2*6 | 0.120 | 0.160 | 0.008 | 7850.0 | 14.470 | | | Stiffener support for connecting plate with vertical seal track | 2*6 | 0.237 | 0.180 | 0.008 | 7850.0 | 32.149 | | | Sill beam - alignment plate | 26*6 | 0.300 | 0.100 | 0.010 | 7850.0 | 367.380 | | | Vertical seal track | ther En | 0.470 | ng Orga
0.100 | anisatio
0.008 | 7850.0 | 743.804 | | | Dogging beam anchoring plate | 4*6 | 0.300 | 0.300 | 0.016 | 7850.0 | 271.296 | | | | (| 12x5) 6 nos | primary em | bedded part | S | | | | Anchoring plate -
primary - sill beam | 26*6 | 0.300 | 0.100 | 0.010 | 7850.0 | 367.380 | | | Anchoring plate -
wheel track | 42*6 | 0.200 | 0.100 | 0.010 | 7850.0 | 395.641 | | | Anchoring plate -
wheel track (side) | 20*6 | 0.100 | 0.100 | 0.010 | 7850.0 | 94.201 | | | Anchoring plate - seal track | 84*6 | 0.100 | 0.100 | 0.010 | 7850.0 | 395.641 | | | Anchoring plate - side guide | 42*6 | 0.100 | 0.150 | 0.010 | 7850.0 | 296.730 | | | | | Embedded | parts for do | gging beam | | | | | Base plate | 4 | 0.400 | 0.400 | 0.012 | 7850.0 | 60.289 | | | | | | | Tota | al Quantity | 21033.975 | kg | | | | | | To | otal Deducte | d Quantity | 0.000 kg | | |---|---|-------------------|------------------|-------------|--------------|--------------------|-----------|---------| | | | | | 10 | | al Quantity | 21033.975 | ka | | | | | Si | av 21033.97 | 75 kg @ Rs (| | | 9960.52 | | 2 | 85.107
Supply of MS round bar | including o | | | - | g | | | | | | | | Em parts | _ | | | | | | Anchoring rod -
primary - wheel track,
ISRO 16 | 42*2*6 | 0.310 | | | 1.58 | 246.547 | | | | Anchoring rod -
primary - wheel track
(side), ISRO 16 | 20*6 | 0.310 | á | | 1.58 | 58.702 | | | | Anchoring rod -
primary - guide track,
ISRO 16 | 42*2*6 | 0.310 | | P | 1.58 | 246.547 | | | | Anchoring rod -
primary - sill beam,
ISRO 16 | 26*2*6 | 0.310 | | | 1.58 | 152.625 | | | | Anchoring rod -
primary - dogging
beam ISRO 16 | 42*2*6
ther Er | 0.310
gineeri | ng Org | anisatio | 1.58
N S | 246.547 | | | | Anchoring rod -
primary - dogging
beam ISRO 16 | 16*6 | 0.350 | | E | 1.58 | 53.021 | | | | | | | | Tota | al Quantity | 1003.989 | kg | | | | | | To | otal Deducte | d Quantity | 0.000 kg | | | | | | | | Net Tota | al Quantity | 1003.989 | kg | | | | | | Say 1003.98 | 39 kg @ Rs 6 | 64.18 / kg | Rs 64 | 436.01 | | 3 | od137503/2019_2020
Supply of MS Bolts and | Nuts | | | | | | | | | | | nut a | and two was | shers | | I | | | | Roller Track M16 -
155 LG Bolt | 84*6 | | | | 0.03 | 15.624 | | | | Wheel Track (side)
M16 - 115LG Bolt | 20*6 | | | | 0.03 | 3.720 | | | | Guide track M16 - 110
LG bolt | 84*6 | | | | 0.03 | 15.624 | | | | Sill beam ISMB
250x125 | 1*6 | 12.900 | | | 37.3 | 2887.020 | | |---|--|-----------------|-------------------|-------------------------|-------------|--------------|---------------|-----------| | | Supply of MS Tees, Ar | ngles, Joists | s, ISMB, ISM | IC confirmin
charges | g to IS202G | rA/B includi | ing cost of c | onveyance | | 4 | 85.102
Supply of MS Tees, And charges | | | | | | | | | | Say 554.920 quintal @ Rs 77.64 / quintal Rs 430 | | | | | | | | | | | | | | | al Quantity | 554.920 q | | | | | | | To | tal Deducte | | 0.000 quir | | | | JOAN WITOXOOLG | | | | l
Tota | al Quantity | 554.920 q | uintal | | | Bolt for connecting plate on sill beam with seal track M16x55LG | 4*6 | 0.0550 | | | 1.58 | 2.086 | | | | Sill beam M16 - 170
LG bolt | 52*6 | 0.170 | | T | 1.58 | 83.804 | | | | Vertical seal track 2
M16 - 315 LG bolt | 42*6
ther En | .0.315
gineeri | ng Orga | anisatio | 1.58
NS | 125.421 | | | | Vertical seal track 1
M16 - 125 LG bolt | 42*6 | 0.125 | | | 1.58 | 49.770 | | | | Guide track M16 - 110
LG Bolt | 84*6 | 0.110 | | 4 | 1.58 | 87.596 | | | | Wheel track (side)
M16 - 115 LG bolt | 20*6 | 0.115 | | 1 | 1.58 | 21.805 | | | | Roller track M16 - 155
LG bolt | 84*6 | 0.155 | A | | 1.58 | 123.430 | | | | | | | Bolt | | | | | | | Bolt for connecting plate on sill beam with seal track M16 x 55 LG | 4*6 | | | | 0.03 | 0.744 | | | | Sill beam M16 - 170
LG bolt | 52*6 | | | | 0.03 | 9.672 | | | | Vertical seal track 2
M16 - 315 LG bolt | 42*6 | | | | 0.03 | 7.812 | | | | Vertical seal track 1
M16 - 125 LG bolt | 42*6 | | | | 0.03 | 7.812 | | | ISA on connecting plate, 80x80x8 - sill 2*6 | |---| | alignment bolt for wheel track web ISA 130x130x10 Vertical wheel seat, ISA 130x130x10 Dogging beam, ISMB 250 Total Quantity 5827.880 kg Total Deducted Quantity 5827.880 kg Say 5827.880 kg @ Rs 66.13 / kg Rs
385397.7 Say 5827.880 kg @ Rs 66.13 / kg Say 5827.880 kg @ Rs 66.13 / kg Rs 385397.7 MS round MS plates 20*6 0.080 6.8 65.280 19.7 2470.380 19.7 2470.380 19.7 2470.380 Res 2470.380 kg Res 385.200 Res 385.200 Res 385.200 Res 385.200 Alignment bolt for wheel track web ISA is a series of the | | ISA 130x130x10 Dogging beam, ISMB 250 Total Quantity Total Deducted Quantity S827.880 kg Net Total Quantity S827.880 kg Net Total Quantity S827.880 kg Say 5827.880 kg @ Rs 66.13 / kg Rs 385397.7 5 85.108 Fabrication, erection and commissioning of Structural steel Embedded parts in IS2062 Grade accessories as per approved specifications, drawings and directions of depth officer at site including of labour , machinery , incidental and handling charges etc complete but excluding cost of malaready supplied MS plates 21033.975 gineering Organisations 21033.975 MS round 1005.263 | | Total Quantity 5827.880 kg Total Deducted Quantity 5827.880 kg Net Total Quantity 5827.880 kg Say 5827.880 kg ® Rs 66.13 / kg Rs 385397.7 85.108 Fabrication, erection and commissioning of Structural steel Embedded parts in IS2062 Grade accessories as per approved specifications, drawings and directions of deptl officer at site including of labour , machinery , incidental and handling charges etc complete but excluding cost of ma already supplied MS plates 21033.975 gineering Organisations 21033.975 MS round 1005.263 | | Total Deducted Quantity 0.000 kg Net Total Quantity 5827.880 kg Say 5827.880 kg @ Rs 66.13 / kg Rs 385397.7 85.108 Fabrication, erection and commissioning of Structural steel Embedded parts in IS2062 Grade accessories as per approved specifications, drawings and directions of deptl officer at site including of labour , machinery , incidental and handling charges etc complete but excluding cost of malaready supplied MS plates 21033.975 gineering Organisations 21033.975 MS round 1005.263 | | Total Deducted Quantity 0.000 kg Net Total Quantity 5827.880 kg Say 5827.880 kg @ Rs 66.13 / kg Rs 385397.7 85.108 Fabrication, erection and commissioning of Structural steel Embedded parts in IS2062 Grade accessories as per approved specifications, drawings and directions of deptl officer at site including of labour , machinery , incidental and handling charges etc complete but excluding cost of malaready supplied MS plates 21033.975 MS round 1005.263 | | Say 5827.880 kg @ Rs 66.13 / kg Rs 385397.7 85.108 Fabrication, erection and commissioning of Structural steel Embedded parts in IS2062 Grade accessories as per approved specifications, drawings and directions of deptl officer at site including of labour , machinery , incidental and handling charges etc complete but excluding cost of malaready supplied MS plates 21033.975 MS round 1005.263 | | 5 85.108 Fabrication, erection and commissioning of Structural steel Embedded parts in IS2062 Grade accessories as per approved specifications, drawings and directions of deptl officer at site including of labour, machinery, incidental and handling charges etc complete but excluding cost of malerady supplied MS plates 21033.975 MS round 1005.263 | | 5 85.108 Fabrication, erection and commissioning of Structural steel Embedded parts in IS2062 Grade accessories as per approved specifications, drawings and directions of deptl officer at site including of labour, machinery, incidental and handling charges etc complete but excluding cost of malaready supplied MS plates 21033.975 MS round 1005.263 | | MS round 1005.263 1005.263 | | MS round 1005.263 1005.263 | | Bolts and nuts 554.92 554.92 | | | | Sections 5827.88 5827.880 | | Total Quantity 28422.038 kg | | Total Deducted Quantity 0.000 kg | | Net Total Quantity 28422.038 kg | | Say 28422.038 kg @ Rs 75.59 / kg | | od138589/2019_2020 Fabrication, supply, erection and assembling of wheel track, sill seat and seal track in correct poland alignment by welding SS embedded parts in 304L Grade as per approved specifications, draw and directions of deptl officer at site including cost of all materials, labour, welding, shearing, grindin lead and lift, conveyance, incidental and handling etc complete.
br>Rate analysis SS embedded | | 2.6Qtl | | | | 2.6Qtl | | | SS strap for sill beam | 1*6 | 12.800 | 0.140 | 0.008 | 7850.0 | 675.226 | | |-------|---|-------------|---------------|---------------|--------------|---------------|------------|---------| | | Strap for side seal seat with sill beam | 2*6 | 0.090 | 0.150 | 0.008 | 7850.0 | 10.174 | | | | | | | | Tot | al Quantity | 3064.328 | kg | | | | | | To | otal Deducte | d Quantity | 0.000 kg | | | | | | | | Net Tot | al Quantity | 3064.328 | kg | | | | | Sa | ay 3064.328 | 3 kg @ Rs 4 | 88.03 / kg | Rs 149 | 5483.99 | | SI No | Description | No | L | В | D | CF | Quantity | Remark | | | 7 F1 - Supply of mat | erials, fab | rication, pai | inting and e | erection of | MS regulat | or shutter | | | 1 | 85.101
Supply of MS plates co | nfirming to | IS 2062GrB | including co | ost of conve | yance charg | es | | | | | | MS plates t | for type I sh | utter (12x5) | 1 | | | | | Skin plate botom | 1*6 | 12.700 | 2.000 | 0.012 | 7850.0 | 14356.081 | 1/303 | | | Skin plate top | 1*6 | 12.700 | 3.150 | 0.012 | 7850.0 | 22610.826 | 2/303 | | | End box bottom | 4*6 | 2.000 | 0.510 | 0.012 | 7850.0 | 2306.016 | 3/303 | | | End box top | 4*6 | 3.150 | 0.510 | 0.012 | 7850.0 | 3631.976 | 4/303 | | | Full depth vertical stiffener web 1 | 3*6 | 1.019 | 1.212 | 0.010 | 7850.0 | 1745.095 | 21/30 | | | Full depth vertical stiffener web 2 | ther Er | gin490ri | ng .212g | anisatio | n 5
7850.0 | 2551.709 | 22/30 | | | Full depth vertical stiffener web 3 (below lifting arrangement) | 2*6 | 1.480 | 1.212 | 0.010 | 7850.0 | 1689.722 | 22a/30 | | | Full depth vertical stiffener web 4,5 | 10*6 | 0.510 | 1.212 | 0.010 | 7850.0 | 2911.346 | 23,24/3 | | | Full depth vertical stiffener web 6 | 5*6 | 0.960 | 1.212 | 0.010 | 7850.0 | 2740.090 | 25/30 | | | Full depth vertical stiffener web 7 | 5*6 | 0.420 | 1.212 | 0.010 | 7850.0 | 1198.790 | 26/30 | | | Full depth vertical stiffener flange 1 | 3*6 | 1.400 | 0.160 | 0.010 | 7850.0 | 316.512 | 33/30 | | | Full depth vertical stiffener flange 2 | 5*6 | 1.300 | 0.160 | 0.010 | 7850.0 | 489.841 | 34/30 | | | Full depth vertical stiffener flange 3 | 5*6 | 0.415 | 0.160 | 0.010 | 7850.0 | 156.372 | 35/30 | | | Full depth vertical stiffener flange 4 | 5*6 | 0.390 | 0.160 | 0.010 | 7850.0 | 146.953 | 36/30 | | Full depth | | 5*6 | 0.645 | 0.160 | 0.010 | 7850.0 | 243.036 | 37/303 | |-------------------------------|------------|---------|------------------|------------------|---------------------|--------------|-----------|-----------| | Vertical stiffe | | 26*6 | 1.019 | 0.150 | 0.010 | 7850.0 | 1871.802 | 27/303 | | Vertical stiffe | ener 2 | 26*6 | 1.490 | 0.150 | 0.010 | 7850.0 | 2736.981 | 28/303 | | Vertical stiffe | ener 3,4 | 52*6 | 0.510 | 0.150 | 0.010 | 7850.0 | 1873.638 | 29,30/303 | | Vertical stiffe | ener 5 | 26*6 | 0.960 | 0.150 | 0.010 | 7850.0 | 1763.424 | 31/303 | | Vertical stiffe | ener 6 | 26*6 | 0.420 | 0.150 | 0.010 | 7850.0 | 771.498 | 32/303 | | Horizontal gi | rder web | 4*6 | 12.326 | 1.200 | 0.010 | 7850.0 | 27866.621 | 14/303 | | Horizonta
flange on s | _ | 4*6 | 12.326 | 0.150 | 0.012 | 7850.0 | 4179.994 | 13/303 | | Horizonta
flange botto | _ | 2*6 | 12.820 | 0.250 | 0.016 | 7850.0 | 4830.576 | 15/303 | | Horizonta
flange top | U | 2*6 | 12.820 | 0.200 | 0.016 | 7850.0 | 3864.461 | 13/303 | | Horizontal g | | 4*6 | 1.062 | 0.190 | 0.010 | 7850.0 | 380.154 | 18/303 | | Horizontal g | | 8*6 | 1.062 | 0.115 | 0.010 | 7850.0 | 460.186 | 19/303 | | Horizontal g | | ther En | 1.062
gineeri | 0.090
ng Orga | 0.010 ·
anisatio | 7850.0
NS | 720.291 | 20/303 | | Seal clamp (| bottom) | 1*6 | 11.762 | 0.080 | 0.010 | 7850.0 | 443.193 | 55/303 | | seal support | (bottom) | 1*6 | 11.762 | 0.020 | 0.020 | 7850.0 | 221.597 | 56/303 | | Vertical seal
L type seal) | base (for | 2*6 | 5.070 | 0.105 | 0.020 | 7850.0 | 1002.948 | 53/303 | | Vertical sea | | 2*6 | 0.090 | 0.105 | 0.006 | 7850.0 | 5.342 | 54/303 | | End box stiff | ener | 24*6 | 0.510 | 0.150 | 0.010 | 7850.0 | 864.757 | 5/303 | | End box st roller | iffener at | 8*6 | 0.200 | 0.150 | 0.010 | 7850.0 | 113.040 | 6/303 | | Pad plate (two sides) | | 16*6 | 0.170 | 0.180 | 0.010 | 7850.0 | 230.602 | 7,9/303 | | Lock plate for | r roller | 8*6 | 0.170 | 0.080 | 0.010 | 7850.0 | 51.245 | 10/303 | | Round lock
150x20mm | • | 8*6 | | | | 2.77 | 133.104 | 8/303 | | Lifting leg | | 4*6 | 0.350 | 0.875 | 0.020 | 7850.0 | 1153.950 | 17/320 | | Lifting leg | stiffener | 4*6 | 0.560 | 0.150 | 0.010 | 7850.0 | 158.256 | 18/320 | | Pad plate for lifting arrangement | 12*6 | 0.200 | 0.200 | 0.010 | 7850.0 | 226.081 | 8/320 | |---|---------|--------|------------------|-------|--------------|----------|--------| | Lock plate for lifting arrangement | 24*6 | 0.120 | 0.050 | 0.010 | 7850.0 | 67.824 | 9/320 | | Spacer for pulley shaft OD-200, ID-91-8 THK | 8*6 | 0.200 | 0.200 | 0.008 | 7850.0 | 120.577 | 15/320 | | Spacer plate for lifting leg shaft | 4*6 | 0.090 | 0.040 | 0.010 | 27.11 | 0.024 | 16/320 | | Lifting bracket shaft
90 Dia 240L | 2*6 | 0.240 | | | 49.91 | 143.741 | 13/320 | | Pulley shaft 90 Dia
212L | 4*6 | 0.212 | .a | | 49.91 | 253.943 | 11/320 | | Diaphram plate | 2*6 | 0.850 | 0.650 | 0.010 | 7850.0 | 520.455 | 19/320 | | Plate for lifting bracket | 4*6 | 1.590 | 0.800 | 0.016 | 7850.0 | 3834.317 | 1/320 | | Gusset plate for lifting bracket upper 1 | 2*6 | 0.300 | 0.110 | 0.012 | 7850.0 | 37.304 | 3/320 | | Gusset plate for lifting bracket upper 2 | 2*6 | 0.250 | 0.110 | 0.012 | 7850.0 | 31.086 | 4/320 | | Gusset plate for lifting bracket bottom 1 | 4*6 | 0.130 | 0.200 | 0.012 | 7850.0 | 58.781 | 5/320 | | Gusset plate for lifting bracket bottom 2 | ther En | 0.100 | ng
Orga
0.110 | 0.012 | ns
7850.0 | 24.869 | 6/320 | | Plate for rope guard | 4*6 | 0.110 | 0.925 | 0.008 | 7850.0 | 153.358 | 7/320 | | Cover plate for lifting bracket | 4*6 | 0.150 | 0.440 | 0.010 | 7850.0 | 124.344 | 2/320 | | Splice plate for connecting upper and lower leaves of shutter U/S | 2*6 | 12.200 | 0.160 | 0.010 | 7850.0 | 1838.784 | 303/41 | | Splice plate (Full depth vertical stiffener flange) | 5*6 | 0.160 | 0.4500 | 0.010 | 7850.0 | 169.560 | 303/45 | | Splice plate (end box) | 4*6 | 0.480 | 0.160 | 0.010 | 7850.0 | 144.692 | 303/43 | | Side guide base | 4*6 | 0.200 | 0.200 | 0.012 | 7850.0 | 90.433 | 59/303 | | Side guide - guiding plate | 8*6 | 0.070 | 0.2100 | 0.010 | 7850.0 | 55.390 | 60/303 | | Side guide round | 4*6 | 0.116 | 0.030 | 0.046 | 7850.0 | 30.160 | 61/303 | | Guide on skin plate | 4*6 | 0.150 | 0.040 | 0.040 | 7850.0 | 45.216 | 63/303 | | Dogging beam 1 | 4*6 | 1.450 | 0.120 | 0.016 | 7850.0 | 524.506 | 3/305 | |---|---------|------------------|--------------|--------------|-------------|----------------|--------------------------| | Dogging beam 2 | 4*6 | 1.450 | 0.200 | 0.016 | 7850.0 | 874.176 | 4/305 | | Dogging beam 3 | 4*6 | 0.100 | 0.220 | 0.016 | 7850.0 | 66.317 | 5/305 | | Dogging beam stiffener | 12*6 | 0.0880 | 0.200 | 0.012 | 7850.0 | 119.371 | 6/306 | | | MS | Plates for typ | oe I shutter | (12x5) dedu | ction | | | | Horizontal girder web | 4*6 | 1.726 | 0.723 | 0.010 | 7850.0 | -2351.039 | Deducti
from
14/30 | | | | | | Tota | al Quantity | 122347.33 | 4 kg | | | | 0 | To | otal Deducte | d Quantity | -2351.039 | kg | | | | JAM | 199 | Net Tota | al Quantity | 119996.29 | 5 kg | | | | Say | y 119996.29 | 95 kg @ Rs | 64.18 / kg | Rs 770 | 1362.21 | | Supply of MS Tees, And charges | A | , ISMB, ISM | | | L. | ling cost of c | conveya | | Bracing angle bottom | 4*6 | 0.960 | | 12xo Hoigi | 11.0 | 253.440 | 40/30 | | ISA 75x75x10 Bracing angle top ISA 75x75x10 | ther Er | gineeri
1.490 | ng Orga | anisatio | ns
11.0 | 393.360 | 39/30 | | Inclined bracing angle
- ISA 75x75x10 | 4*6 | 1.400 | | | 11.0 | 369.600 | 38/30 | | Top horizontal support
on skin plate ISMC
150x75x10 | 1*6 | 12.326 | | | 16.4 | 1212.879 | 17/30 | | Vertical seal clamp
ISA 75x75x8 | 2*6 | 5.150 | | | 8.9 | 550.021 | 52/30 | | Dogging beam support ISA 75x75x8 | 8*6 | 0.232 | | | 8.9 | 99.111 | 9/305 | | Dogging beam handle
16mm dia rod | 4*6 | 0.305 | | | 1.58 | 11.551 | 7/305 | | | | | | Tota | al Quantity | 2889.962 | kg | | | | | Tc | otal Deducte | d Quantity | 0.000 kg | | | | | | | Net Tota | al Quantity | 2889.962 | kg | | | | 5 | Say 2889.96 | 62 kg @ Rs | 66.13 / kg | Rs 191 | 113.19 | | | | | | | | | | | Fabrication and supply drawings and direction incidental and handlin | ns of deptl o | officer at sit | te including | cost of lab | our, machir | ery, all lea | ds and lifts, | |--|--|--|--|---|--|--|---| | MS plates | 119996.29
5 | | | | | 119996.29
5 | | | MS sections | 2889.962 | | | | | 2889.962 | | | | | | | Tota | al Quantity | 122886.25 | 7 kg | | | | | To | tal Deducte | d Quantity | 0.000 kg | | | | | | | Net Tota | al Quantity | 122886.25 | 7 kg | | | | Sa | y 122886.25 | 7 kg @ Rs | 62.86 / kg | Rs 772 | 4630.12 | | paint confirming to IS1 coats of priming coat a thickness of 70+/-5 mid is not less than 350mid including cost of all manages, hire of T&P | applied with
crons, so the
crons over t
naterials, la | zinc prime
at the total f
the grit blas
abour charg | r containing
film thicknes
sted and cle
ges, cost c | not less thes of all coat
aned surfact
f testing al | an 85% of an 85% of an 85% of an | zinc dry film
oriming coat
A standard o
naterials, al | with a film
at any rate
of IS 14177 | | | MS | olates for ty | pe I shutter | (12x5) dedu | ction | | | | Horizontal girder web | th e t6En | gih726ri | ng ^{0.7} 23 g | anisatio | ns 2.0 | -59.899 | Deduction
from
14/303 | | | \cup | MS plates | for type I sh | utter (12x5) | 1 | | | | Skin plate bottom | 1*6 | 12.700 | 2.000 | | 2.0 | 304.800 | 1/303 | | Skin plate top | 1*6 | 12.700 | 3.150 | | 2.0 | 480.060 | 2/303 | | End box bottom | 4*6 | 2.000 | 0.510 | | 2.0 | 48.960 | 3/303 | | End box top | 4*6 | 3.150 | 0.510 | | 2.0 | 77.112 | 4/303 | | Full depth vertical stiffener web 1 | 3*6 | 1.019 | 1.212 | | 2.0 | 44.462 | 21/303 | | Full depth vertical stiffener web 2 | 3*6 | 1.490 | 1.212 | | 2.0 | 65.012 | 22/303 | | Full depth vertical stiffener web 3 (below lifting arrangement) | | 1.480 | 1.212 | | 2.0 | 43.051 | 22a/303 | | Full depth vertical stiffener web 4,5 | 10*6 | 0.510 | 1.212 | | 2.0 | 74.175 | 23,24/303 | | Full depth vertical stiffener web 6 | 5*6 | 0.960 | 1.212 | | 2.0 | 69.812 | 25/303 | | Full depth vertical stiffener web 7 | 5*6 | 0.420 | 1.212 | | 2.0 | 30.543 | 26/303 | |--|---------|-------------------|-----------------|----------|-------------------|---------|-----------| | Full depth vertical stiffener flange 1 | 3*6 | 1.400 | 0.160 | | 2.0 | 8.064 | 33/303 | | Full depth vertical stiffener flange 2 | 5*6 | 1.300 | 0.160 | | 2.0 | 12.480 | 34/303 | | Full depth vertical stiffener flange 3 | 5*6 | 0.415 | 0.160 | | 2.0 | 3.984 | 35/303 | | Full depth vertical stiffener flange 4 | 5*6 | 0.390 | 0.160 | | 2.0 | 3.744 | 36/303 | | Full depth vertical stiffener flange 5 | 5*6 | 0.645 | 0.160 | | 2.0 | 6.192 | 37/303 | | Vertical stiffener 1 | 26*6 | 1.019 | 0.150 | | 2.0 | 47.690 | 27/303 | | Vertical stiffener 2 | 26*6 | 1.490 | 0.150 | 1 | 2.0 | 69.732 | 28/303 | | Vertical stiffener 3,4 | 52*6 | 0.510 | 0.150 | 7 11 | 2.0 | 47.736 | 29,30/303 | | Vertical stiffener 5 | 26*6 | 0.960 | 0.150 | Ta. | 2.0 | 44.928 | 31/303 | | Vertical stiffener 6 | 26*6 | 0.420 | 0.150 | | 2.0 | 19.656 | 32/303 | | Horizontal girder web | 4*6 | 12.326 | 1.200 | | 2.0 | 709.978 | 14/303 | | Horizontal girder flange on skin plate | ther En | 12.326
gineeri | 0.150
ng Urg | anisatio | ns ^{2.0} | 88.748 | 13/303 | | Horizontal girder flange bottom outside | 2*6 | 12.820 | 0.250 | F | 2.0 | 76.920 | 15/303 | | Horizontal girder flange top outside | 2*6 | 12.820 | 0.200 | | 2.0 | 61.536 | 13/303 | | Horizontal girder web stiffener bottom 1 | 4*6 | 1.062 | 0.190 | | 2.0 | 9.686 | 18/303 | | Horizontal girder web stiffener bottom 2 | 8*6 | 1.062 | 0.115 | | 2.0 | 11.725 | 19/303 | | Horizontal girder web stiffener top | 16*6 | 1.062 | 0.090 | | 2.0 | 18.352 | 20/303 | | Seal clamp (bottom) | 1*6 | 11.762 | 0.080 | | 2.0 | 11.292 | 55/303 | | Seal support (bottom) | 1*6 | 11.762 | 0.020 | | 2.0 | 2.823 | 56/303 | | Vertical seal base (for L type seal) | 2*6 | 5.0700 | 0.105 | | 2.0 | 12.777 | 53/303 | | Vertical seal base on bottom seal end | 2*6 | 0.090 | 0.105 | | 2.0 | 0.227 | 54/303 | | End box stiffener | 24*6 | 0.510 | 0.150 | | 2.0 | 22.032 | 5/303 | | End box stiffener a | at 8*6 | 0.200 | 0.150 | | 2.0 | 2.880 | 6/303 | |--|---------|---------|--------|----------|-----|--------|---------| | Pad plate for rolle (two sides) | er 16*6 | 0.170 | 0.180 | | 2.0 | 5.876 | 7,9/303 | | Lock plate for roller | 8*6 | 0.170 | 0.0800 | | 2.0 | 1.306 | 10/303 | | Round lock plate di
150x20mm thk | ia 8*6 | | | | 2.0 | 96.000 | 8/303 | | Lifting leg | 4*6 | 0.350 | 0.875 | | 2.0 | 14.700 | 17/320 | | Lifting leg stiffene
plate | er 4*6 | 0.560 | 0.150 | | 2.0 | 4.032 | 18/320 | | Pad plate for liftin arrangement | 12*6 | 0.200 | 0.200 | | 2.0 | 5.761 | 8/320 | | Lock plate for liftin arrangement | 24*6 | 0.120 | 0.050 | 7 | 2.0 | 1.728 | 9/320 | | Spacer for pulley sha | 8*6 | 0.200 | 0.200 | 4 | 2.0 | 3.841 | 15/320 | | Spacer plate for lifting | 4*6 | 0.090 | 0.040 | | 2.0 | 0.173 | 16/320 | | Lifting bracket sha
90 dia 240 L | ft 2*6 | 0.240 | a and | | 2.0 | 5.760 | 13/320 | | Pulley shaft 90 di
212 L | ther Er | 0.212 - | ng Org | anisatio | 2.0 | 10.176 | 11/320 | | Diaphram plate | 2*6 | 0.850 | 0.650 | | 2.0 | 13.260 | 19/320 | | Plate for lifting bracke | et 4*6 | 1.590 | 0.800 | | 2.0 | 61.057 | 1/320 | | Gusset plate for liftin | | 0.300 | 0.110 | | 2.0 | 0.792 | 3/320 | | Gusset plate for liftin | 2*6 | 0.250 | 0.110 | | 2.0 | 0.660 | 4/320 | | Gusset plate for liftin | ag 4*6 | 0.130 | 0.200 | | 2.0 | 1.249 | 5/320 | | Gusset plate for liftin bracket bottom 2 | ng 4*6 | 0.100 | 0.110 | | 2.0 | 0.528 | 6/320 | | Plate for rope guard | 4*6 | 0.110 | 0.925 | | 2.0 | 4.884 | 7/320 | | Cover plate for liftin | 4*6 | 0.150 | 0.440 | | 2.0 | 3.168 | 2/320 | | Splice plate for connecting upper and bottom leaves of shutter U/S | 2*6 | 12.200 | 0.160 | | 2.0 | 46.848 | 303/41 | |--|---------|------------------|----------------|--------------|-------------------|------------|--------| | Splice plate (Full depth vertical stiffener flange) | 5*6 | 0.160 | 0.4500 | | 2.0 | 4.320 | 303/45 | | Splice plate (end box) | 4*6 | 0.480 | 0.160 | | 2.0 | 3.687 | 303/43 | | Side guide base | 4*6 | 0.200 | 0.200 | | 2.0 | 1.921 | 59/303 | | Side guide - guiding plate | 8*6 | 0.070 | 0.2100 | | 2.0 | 1.412 | 60/303 | | Side guide round | 4*6 | 0.116 | 0.030 | | 2.0 | 0.168 | 61/303 | | Guide on skin plate | 4*6 | 0.150 | 0.040 | | 2.0 | 0.289 | 63/303 | | Dogging beam 1 | 4*6 | 1.450 |
0.120 | T | 2.0 | 8.352 | 3/305 | | Dogging beam 2 | 4*6 | 1.450 | 0.200 | 1 1 | 2.0 | 13.920 | 4/305 | | Dogging beam 3 | 4*6 | 0.100 | 0.220 | T & | 2.0 | 1.056 | 5/305 | | Dogging beam stiffener | 12*6 | 0.0880 | 0.200 | | 2.0 | 2.535 | 6/306 | | | | 6 Nos of shu | utters of size | 12x5 heigh | t | | | | Bracing angle bottom ISA 75x75x10 | ther En | gineeri
0.960 | ng Org | anisatio | ns _{0.3} | 6.912 | 40/303 | | Bracing angle top ISA 75x75x10 | 4*6 | 1.490 | | 广上 | 0.3 | 10.728 | 39/303 | | Inclined bracing angle - ISA 75x75x10 | 4*6 | 1.400 | | | 0.3 | 10.080 | 38/303 | | Top horizontal support on skin plate ISMC 150x75x10 | 1*6 | 12.326 | | | 0.6 | 44.374 | 17/303 | | Vertical seal clamp
ISA 75x75x8 | 2*6 | 5.150 | | | 0.3 | 18.540 | 52/303 | | Dogging beam support ISA 75x75x8 | 8*6 | 0.232 | | | 0.3 | 3.341 | 9/305 | | Dogging beam handle
16mm dia rod | 4*6 | 0.305 | | | 0.05 | 0.367 | 7/305 | | | | | | Tota | al Quantity | 2944.970 | sqm | | | | | To | otal Deducte | d Quantity | -59.899 so | mp | | | | | | Net Tota | al Quantity | 2885.071 | sqm | | | | | | | | | | | | | | Say | 2885.071 sqr | m @ Rs 809 | .89 / sqm | Rs 233 | 6590.15 | | | | |---|---|----------------|-----------|----------------|---------------|-------------|----------------|----------|--|--|--| | 5 | 85.111 Erection of the gates labour all incidental an | - | _ | _ | _ | - | | | | | | | | MS plates | 119996.29
5 | | | | | 119996.29
5 | | | | | | | MS sections | 2889.962 | | | | | 2889.962 | | | | | | | | | | | Tota | al Quantity | 122886.25 | 7 kg | | | | | | | | | То | tal Deducte | d Quantity | 0.000 kg | | | | | | | | | | | Net Tota | al Quantity | 122886.25 | 7 kg | | | | | | | | 5 | Say 122886.2 | 57 kg @ Rs | 6.09 / kg | Rs 748 | 3377.31 | | | | | 6 | od138692/2019_2020
Supply of SS bolts | | الاس | | | | | | | | | | | | 1.6 | Hex. bo | lt with washe | er (roller) | | | | | | | | | Hex. bolt with washer M16 40LG | 56 | 別 | | TA | 0.13 | 7.280 | 11/303 | | | | | | Hex. bolt with washer M16 30LG | 32 | | | | 0.13 | 4.096 | 12/303 | | | | | | Hex. bolt with washer (splice plate assembly) | | | | | | | | | | | | | M16 X 40 LG HEX
B O L T W I T H
WASHER (SS) full
depth stiffener | 40*6 | gineer: | ing Orga | anisatio
T | ns
0.13 | 31.201 | 46/303 | | | | | | M16 X 65 LG HEX
B O L T W I T H
W A S H E R (SS) | 288*6 | | | | 0.16 | 276.480 | 47,48/30 | | | | | | M12 X 90 LG HEX
B O L T W I T H
W A S H E R (SS) | 4*6 | | | | 0.13 | 3.000 | 49/303 | | | | | | | | Hex. bolt | with washer (| side guide) | | | | | | | | | M16 X 40 LG HEX
B O L T W I T H
W A S H E R | | | | | 0.13 | 12.480 | | | | | | | | | Hex. bo | olt with washe | er(lifting) | | | | | | | | | M16 40LG hexagonal bolt with nut | 48*6 | | | | 0.13 | 37.440 | 10/320 | | | | | | | . | | • | Tota | al Quantity | 371.977 k | a | | | | | | | | | To | tal Deducte | d Quantity | 0.000 kg | | |--------|--|--------------|---------------|---------------|---------------|------------------------------|--------------|-------------| | | | | | | | al Quantity | 371.977 k | q | | | | | ; | Say 371.977 | | | | 949.04 | | SI No | Description | No | L | В | D | CF | Quantity | Remark | | 8 F2 - | Supplying and fixing of | flat type ru | ıbber seal a | t the bottor | n side, ang | ular type at | outer verti | cal side. | | 1 | 85.116 Supplying and fixing in to IS 11855 to the gate conveyance charges char | s including | cost of SS | bolts and nu | ıt all labour | and machir | | _ | | | | | Shutter | s - 6 Nos - F | lat seal | | I | | | | Flat type seal | 1*6 | 11.976 | -00- | | | 71.857 | | | | | | //88 | 36A\ | Tota | al Quantity | 71.857 me | etre | | | | | 6.01 | To | tal Deducte | d Quantity | 0.000 met | re | | | | 1 | | K W | Net Tota | al Quantity | 71.857 me | etre | | | | (k) | Say 71 | .857 metre (| @ Rs 1905.1 | 10 / metre | Rs 136 | 894.77 | | | Supplying and fixing i confirming to IS11855 i incidental and conveya | to the gates | s including c | ost of SS bo | olts and nuts | s and all lab
cations and | our and ma | | | | Angular type teflon cladded rubber seal D30x120 width | | 61.872 | | | | | | | | | al Quantity | 61.872 metre | | | | | | | | | 0.000 met | re | | | | | | | | | 61.872 me | etre | | | | | | | | | Rs 183 | 8834.09 | | | | | | | 3 | od138742/2019_2020
Providing rubber flap b
SS bolt and nut | etween spl | ice plate an | d skin plate | including c | ost of rubbe | er and labou | r excluding | | | RUBBER 160 X 3 -
480LG | 4*6 | 0.480 | | | | 11.520 | | | | RUBBER 160 X 3 -
12200LG | 2*6 | 12.200 | | | | 146.400 | | | | | | | | Tota | al Quantity | 157.920 m | netre | | | | · | | | | | | | | | | | | 10 | tal Deducte | d Quantity | 0.000 met | re | | | | | Say 15 | 7.920 metre | @ Rs 638.8 | 33 / metre | Rs 100 | 884.03 | | | | |-------|---|----------------------|-------------------------------|----------------------------|-----------------------------|-------------------------------|--------------|------------|--|--|--| | SI No | Description | No | L | В | D | CF | Quantity | Remark | | | | | | 9 F | 3 - Supply | ing and fixi | ng thrust re | oller assem | bly | | | | | | | 1 | od138763/2019_2020 Supplying and fixing cashaft and 22219E self and drawings including conveyance charges | aligning sp | herical rolle
all material | r bearing ar
s, machine | nd accessor
ries, labour | ies as per a
, all lift an | approved spe | ecificatio | | | | | | Cast steel thrust roller | 8*6 | | | | | 48.000 | | | | | | | | | | | Tota | al Quantity | 48.000 no | | | | | | | | | | To | otal Deducte | d Quantity | 0.000 no | | | | | | | | | 100 | :SN | Net Tota | al Quantity | 48.000 no | | | | | | | | | Sa | ay 48.000 no | o @ Rs 4148 | 36.80 / no | Rs 199 | 1366.40 | | | | | SI No | Description | No | W. 6 | В | D | CF | Quantity | Remark | | | | | 1 | 85.101 Supply of MS plates cor | 152 | units and ro | | | vance charg | ies | | | | | | | 6 Nos of shutters of size 12 m width x 5 m height | | | | | | | | | | | | | Longitudinal girder | ther ₆ En | g13.990 ¹¹ | ng.000g | an <u>i.</u> 84610 | 11 7 850.0 | 13178.580 | 2/311 | | | | | | Longitudinal girder flange | 4*6 | 13.990 | 0.200 | 0.020 | 7850.0 | 10542.864 | 1/311 | | | | | | Foundation base plate | 4*6 | 0.450 | 0.500 | 0.010 | 7850.0 | 423.901 | 3a/31 | | | | | | Base plate | 4*2 | 0.450 | 0.500 | 0.025 | 7850.0 | 353.251 | 3/311 | | | | | | Stiffener on main girder with base plate | 16*2 | 1.020 | 0.235 | 0.010 | 7850.0 | 602.127 | 4/311 | | | | | | Plate on foundation rod | 24*2 | 0.100 | 0.100 | 0.016 | 7850.0 | 60.289 | 6/311 | | | | | | Vertical stiffener on main girder below C5 | 4*6 | 0.620 | 0.085 | 0.010 | 7850.0 | 99.287 | 13/31 | | | | | | Vertical stiffener on
main girder below C6
and C4 | 8*6 | 0.720 | 0.0850 | 0.010 | 7850.0 | 230.602 | 14/31 | | | | | | Vertical stiffener on main girder below C7 | 18*6 | 0.820 | 0.0850 | 0.010 | 7850.0 | 590.917 | 15/31 | | | | | Vertical stiffener on
main girder below
pulley cross girder | 4*6 | 0.870 | 0.0850 | 0.010 | 7850.0 | 139.322 | 16/311 | |---|---------|---------|--------------------|-------------------|--------|----------|--------| | Vertical stiffener on main girder | 34*6 | 1.000 | 0.0850 | 0.010 | 7850.0 | 1361.190 | 17/311 | | Supporting plate for hand rail post | 24*6 | 0.150 | 0.200 | 0.010 | 7850.0 | 339.120 | 24/311 | | Flat on hand rail | 2*6 | 13.9900 | 0.050 | 0.008 | 7850.0 | 527.144 | 27/311 | | Pulley bracket | 4*6 | 1.596 | 0.550 | 0.016 | 7850.0 | 2646.041 | 29/311 | | Pad plate for pulley | 8*6 | 0.200 | 0.200 | 0.010 | 7850.0 | 150.721 | 32/311 | | Lock plate for pulley | 16*6 | 0.120 | 0.050
 0.010 | 7850.0 | 45.216 | 31/311 | | Spacer OD 200, ID 92 | 8*6 | 0.200 | 0.200 | 0.008 | 7850.0 | 120.577 | 35/311 | | Base plate for worm reducer | 1*6 | 0.400 | 0.450 | 0.010 | 7850.0 | 84.780 | 17/312 | | Stiffener plate for base plate 1 (worm reducer unit) | 4*6 | 0.090 | 0.090 | 0.010 | 7850.0 | 15.261 | 18/312 | | Stiffener plate for base plate 2 (worm reducer unit) | 2*6 | 0.100 | 0.155 | 0.010 | 7850.0 | 14.601 | 20/312 | | Base plate for brake unit | ther En | 0.150 | ng Orga
- 0.500 | anisatio
0.010 | 7850.0 | 35.325 | 21/312 | | Stiffener plate for brake unit base plate | 4*6 | 0.065 | 0.065 | 0.010 | 7850.0 | 7.960 | 23/312 | | Base plate for motor | 1*6 | 0.250 | 0.250 | 0.010 | 7850.0 | 29.438 | 24/312 | | Stiffener plate for motor base 1 | 4*6 | 0.070 | 0.070 | 0.010 | 7850.0 | 9.232 | 25/312 | | Stiffener plate for motor base 2 | 1*6 | 0.070 | 0.100 | 0.010 | 7850.0 | 3.297 | 27/312 | | Diaphragm plate (rope drum) | 4*6 | 0.350 | 0.600 | 0.020 | 7850.0 | 791.280 | 13/314 | | Cover plate (rope drum) | 4*6 | 0.280 | 0.120 | 0.020 | 7850.0 | 126.605 | 14/314 | | Stiffener plate - 1 (RD diaphram)1 | 8*6 | 0.080 | 0.185 | 0.010 | 7850.0 | 55.767 | 11/314 | | Stiffener plate - 2 (RD diaphram)2 | 4*6 | 0.080 | 0.130 | 0.010 | 7850.0 | 19.594 | 12/314 | | Spacer (RD) OD:250 | 4*6 | 0.250 | 0.250 | 0.080 | 7850.0 | 942.000 | 15/314 | |---|------------------|------------|-----------------------|---------|----------------------|-----------|--------| | ID:81 8THK | 4 0 | 0.230 | 0.230 | 0.080 | 7030.0 | 942.000 | 13/314 | | Plummer block base plate 1 | 4*6 | 0.100 | 0.315 | 0.025 | 7850.0 | 148.365 | 16/314 | | Plummer block base plate 2 | 4*6 | 0.100 | 0.280 | 0.040 | 7850.0 | 211.008 | 17/314 | | Additional plate on RD base frame 1 | 2*6 | 0.090 | 1.760 | 0.010 | 7850.0 | 149.213 | 7/314 | | Additional plate on RD base frame 2 | 2*6 | 0.090 | 0.780 | 0.010 | 7850.0 | 66.129 | 8/314 | | Stiffener plate on RD base frame 1 | 10*6 | 0.170 | 0.276 | 0.010 | 7850.0 | 220.994 | 9/314 | | Stiffener plate on RD base frame 2 | 2*6 | 0.080 | 273.000 | 0.010 | 7850.0 | 20573.280 | 10/314 | | Drum cover body (side and top) | 2*6 | 2.640 | 0.560 | 0.00315 | 7850.0 | 438.686 | 6/315 | | Drum cover body (side) | 4*6 | 0.710 | 1.675 | 0.00315 | 7850.0 | 705.773 | 7/315 | | Door sheet | 2*6 | 0.210 | 0.310 | 0.0035 | 7850.0 | 21.464 | 11/315 | | DU cover body (side) - | th e teEn | gi1.650 ri | ng ^{0.980} g | 0.00315 | n ³ 850.0 | 959.625 | 8/313 | | DU cover body (side) - | 2*6 | 0.980 | 0.820 | 0.00315 | 7850.0 | 238.453 | 9/313 | | DU cover body (side) - | 2*6 | 0.570 | 0.820 | 0.00315 | 7850.0 | 138.692 | 10/313 | | DU cover (Top) | 2*6 | 0.820 | 1.750 | 0.00315 | 7850.0 | 425.808 | 11/313 | | Plate | 2*6 | 0.150 | 0.150 | 0.005 | 7850.0 | 10.598 | 12/313 | | Plate | 4*6 | 0.500 | 1.030 | 0.005 | 7850.0 | 485.130 | 13/313 | | Base plate for dial gauge worm reducer | 1*6 | 0.300 | 0.470 | 0.008 | 7850.0 | 53.129 | 2/319 | | Stiffener support plate for worm reducer base 1 | 2*6 | 0.185 | 0.150 | 0.010 | 7850.0 | 26.141 | 4/319 | | Stiffener support plate for base 2 | 1*6 | 0.170 | 0.150 | 0.010 | 7850.0 | 12.011 | 4a/319 | | Shim for dial assembly | 1*6 | 0.060 | 0.165 | 0.002 | 7850.0 | 0.933 | 5/319 | | Plummer block base plate | 1*6 | 0.280 | 0.090 | 0.010 | 7850.0 | 11.870 | 6/319 | | | | | | 1 | | i | | | |---|--|--------------|--------------|---------------|--------------|--------------|----------------|-----------| | | Stiffener support plate for plummer block base 1 | 2*6 | 0.100 | 0.090 | 0.010 | 7850.0 | 8.478 | 7/319 | | | Needle | 1*6 | 0.170 | 0.0400 | 0.00315 | 7850.0 | 1.009 | 10/319 | | | Needle base | 1*6 | 0.040 | 0.040 | 0.040 | 7850.0 | 3.015 | 10a/319 | | | Plate for dial gauge | 2*6 | 0.230 | 0.276 | 0.010 | 7850.0 | 59.799 | 21/319 | | | | | | | Tota | al Quantity | 58515.892 | kg | | | | | | To | otal Deducte | d Quantity | 0.000 kg | | | | | | | | Net Tota | al Quantity | 58515.892 | kg | | | | | S | ay 58515.89 | 92 kg @ Rs | 64.18 / kg | Rs 375 | 5549.95 | | 2 | 85.102
Supply of MS Tees, Ancharges | gles, Joists | | | 1 | GrA/B includ | ding cost of c | conveyanc | | | | 6 1 9 | Sh | nutters - 6 N | os | | | | | | Cross Member - C7
(ISMC 200 X 75) | 8*6 | 2.490 | | TA | 22.1 | 2641.393 | 11/311 | | | Cross Member - C4 & C6 (ISMC 300 X 90) | 2*6 | 2.490 | | | 35.8 | 1069.704 | 8/311 | | | Cross Member
support for pulley
bracket - (ISMC 150 X
75) | 4^6 | gineeri
D | ng Orga | anisatio | ns
16.4 | 462.087 | 12/311 | | | Cross Member - C5
(ISMB 400 X 140) | 2*6 | 2.490 | | | 61.6 | 1840.609 | 7/311 | | | Cross Member - C3
(ISMC 200 X 75) | 4*6 | 1.246 | | | 22.1 | 660.879 | 9/311 | | | Cross Member - C2
(ISMC 200 X 75) | 2*6 | 1.169 | | | 22.1 | 310.019 | 10/311 | | | Supporting angle for cross member ISA 75x75x8 | 34*6 | 0.100 | | | 8.9 | 181.561 | 18/311 | | | Toe guard hand rail (75x75x8) | 2*6 | 13.250 | | | 8.9 | 1415.101 | 25/311 | | | Hand rail post (65x65x6) | 24*6 | 1.250 | | | 7.7 | 1386.000 | 26/311 | | | Flat on hand rail | 2*6 | 13.990 | 0.050 | 0.008 | 7850.0 | 527.144 | | | | DU base frame - 1
ISMC 150 X 75 | 2*6 | 1.750 | | | 16.4 | 344.400 | 11/312 | | DU base frame
ISMC 150 X 75 | 3*6 | 0.700 | | | 16.4 | 206.640 | 12/312 | |--|----------------|------------------|---------|----------|--------|---------|--------| | Manual operati
support - 1 I
75X75X8 | | 0.800 | | | 8.9 | 170.881 | 14/312 | | Manual operati
support - 2 I
75X75X8 | | 0.400 | | | 8.9 | 42.721 | 15/312 | | Manual operati
support - 3 I
75X75X8 | | 0.500 | | | 8.9 | 53.401 | 16/312 | | Worm reducer baplate support ISA 1 X 100 X 8 | | 0.700 | A. | | 12.1 | 101.640 | 19/312 | | Brake base pla
support ISA 75 X 7
8 | | 0.700 | 37 | | 8.9 | 74.760 | 22/312 | | Motor base pla
support ISA 75 X 75
8 | 9 / 1 / | 0.700 | | | 8.9 | 74.760 | 26/312 | | Plummer support I
75 X 75 X 8 | sa
Other Er | 0.250
gineeri | ng Orga | anisatio | ns 8.9 | 13.351 | 28/312 | | Rod 1 for ha | n d 1*6 | 0.550 | | F | 9.86 | 32.539 | 29/312 | | Handle | 1*6 | 0.367 | | | 9.86 | 21.712 | 31.312 | | Ladder - Main fran
ISMC 200 X 75 | me,
2*2 | 7.500 | | | 22.1 | 663.000 | Ladder | | Ladder - Hand isupport, ISA 65 X X 6 | | 1.000 | | | 5.8 | 139.200 | Ladder | | Ladder - Step, ISA
X 40 X 6 | 40 30*2 | 2.400 | | | 3.5 | 504.000 | Ladder | | Ladder hand rail fla | 2*2 | 7.500 | 0.050 | 0.008 | 7850.0 | 94.200 | Ladder | | Rope drum handle dia | 16 4*6 | 0.300 | | | 1.58 | 11.376 | 10/315 | | Rope drum handle dia | 16 2*6 | 0.400 | | | 1.58 | 7.585 | 10/315 | | Rope drum handle dia | 16
2*6 | 0.280 | | | 1.58 | 5.309 | 10/315 | | Rope drum cover -
ISA 35 X 35 X 5 | 4*6 | 2.640 | | | 2.6 | 164.736 | 1/315 | |---------------------------------------|-----|------------------|----------|----------|------------|---------|--------| | Rope drum cover -
ISA 35 X 35 X 5 | 4*6 | 0.570 | | | 2.6 | 35.568 | 2/315 | | Rope drum cover -
ISA 35 X 35 X 5 | 2*6 | 0.946 | | | 2.6 | 29.516 | 3/315 | | Rope drum cover -
ISA 35 X 35 X 5 | 1*6 | 0.082 | | | 2.6 | 1.280 | 4a/315 | | Rope drum cover -
ISA 35 X 35 X 5 | 2*6 | 0.205 | | | 2.6 | 6.396 | 5/315 | | Rope drum cover -
ISA 35 X 35 X 5 | 2*6 | 0.135 | a. | | 2.6 | 4.213 | 4/315 | | Rope drum cover -
ISA 35 X 35 X 5 | 8*6 | 0.500 | | | 2.6 | 62.401 | 5a/315 | | Rope drum cover flat | 4*6 | 0.0500 | 1.000 | 0.005 | 7850.0 | 47.100 | | | Rope drum cover flat 2 | 2*6 | 0.0500 | 1.406 | 0.005 | 7850.0 | 33.112 | | | Rope drum base frame ISMC 300 X 90 | 2*6 | 1.760 | NA 01 12 | | 35.8 | 756.096 | 6/314 | | Rope drum base
frame ISMC 300 X 90 | 2*6 | gineeri
1.250 | ng Orga | anisatio | ns
35.8 | 537.000 | 5/314 | | Rope drum base frame ISMC 300 X 90 | 2*6 | 0.980 | | 上 | 35.8 | 421.008 | 4/314 | | Rope drum base frame ISMC 300 X 90 | 2*6 | 0.972 | | | 35.8 | 417.572 | 3/314 | | Rope drum base frame ISMC 300 X 90 | 2*6 | 0.870 | | | 35.8 | 373.752 | 2/314 | | Rope drum base frame ISMC 300 X 90 | 2*6 | 0.270 | | | 35.8 | 115.992 | 1/314 | | DU cover frame-1 ISA
- 35 X 35 X 6 | 4*6 | 0.840 | | | 3.0 | 60.481 | 1/313 | | DU cover frame-2 ISA
- 35 X 35 X 6 | 4*6 | 1.087 | | | 3.0 | 78.265 | 2/313 | | DU cover frame-3 ISA
- 35 X 35 X 6 | 4*6 | 0.273 | | | 3.0 | 19.657 | 3/313 | | DU cover frame-4 ISA
- 35 X 35 X 6 | 4*6 | 1.000 | | | 3.0 | 72.000 | 4/313 | | | DU cover frame-5 ISA
- 35 X 35 X 6 | 4*6 | 2.400 | | | 3.0 | 172.800 | 5/313 | |---|---------------------------------------|--------------|---------------|--------------|--------------|-------------|-----------|---------| | | DU cover frame-6 ISA
- 35 X 35 X 6 | 4*6 | 0.840 | | | 3.0 | 60.481 | 6/313 | | | DU cover frame-7 ISA
- 35 X 35 X 6 | 6*6 | 0.770 | | | 3.0 | 83.160 | 7/313 | | | Round handle 12 dia | 4*6 | 0.300 | | | 0.89 | 6.408 | 14/313 | | | Dial assembly frame | 2*6 | 0.925 | | | 9.2 | 102.120 | 3/319 | | | Dial assembly
ROUND 20 dia | 1*6 | 0.2200 | | | 2.46 | 3.248 | 8/319 | | | Dial assembly ISA 50 X 50 X 6 | 2*6 | 0.050 | A | | 4.5 | 2.700 | 9/319 | | | | - | 838 | 8 8 | Tota | al Quantity | 16723.034 | kg | | | | 619 | N R | To | otal Deducte | d Quantity | 0.000 kg | | | | | 15 | 11516 | IN TO | Net Tota | al Quantity | 16723.034 | kg | | | | 102 | S | ay 16723.03 | 34 kg @ Rs 6 | 66.13 / kg | Rs 110 | 5894.24 | | 3 | 85.103 Supply of MS checquer | ed plates in | ncluding cost | t of conveya | ince charges | ; | | | | | 0 | ther For | nequered pla | ate for type | (12 X 5) Ho | istS | | | | | MS checquered plate | 2*6 | 2.450 | 2.720 | T | 64.9 | 5189.924 | 19/311 | | | MS checquered plate
- 28 mm | 4*6 | 1.120 | 1.570 | | 64.9 | 2738.884 | 20/311 | | | MS checquered plate - 38 mm | 2*6 | 0.940 | 1.050 | | 64.9 | 768.676 | 21/311 | | | MS
checquered plate
- 48 mm | 2*6 | 0.400 | 1.255 | | 64.9 | 390.958 | 22/311 | | | MS checquered plate
- 58 mm | 2*6 | 0.855 | 2.450 | | 64.9 | 1631.392 | 23/311 | | | MS checquered plate - ladder 8 mm | 30*6 | 0.600 | 0.300 | | 64.9 | 2102.760 | | | | | | | | Tota | al Quantity | 12822.594 | kg | | | | | | To | otal Deducte | d Quantity | 0.000 kg | | | | | | | | Net Tota | al Quantity | 12822.594 | kg | | | | | S | ay 12822.59 | 94 kg @ Rs 7 | 73.33 / kg | Rs 940 | 280.82 | | 4 | od138792/2019_2020 | Supply of GI pipe 32mn | n dia | | | | | | | | | | |---|---|---------|---------|---------------|--------------|-------------|-----------|--------|--|--|--| | | | | 1 | Hand rails | 1 | | | | | | | | | Hand rails of hoist bridge | 2*6 | 12.300 | | | | 147.601 | 28/311 | | | | | | Hand rails of ladder | 2*2 | 7.500 | | | | 30.000 | | | | | | | | | | | Tota | al Quantity | 177.601 m | netre | | | | | | | | | To | otal Deducte | d Quantity | 0.000 met | re | | | | | | | | | | Net Tota | al Quantity | 177.601 m | netre | | | | | | | | Say 17 | 7.601 metre | @ Rs 220.7 | 73 / metre | Rs 39 | 201.87 | | | | | 5 | od138799/2019_2020
Supply of MS bolts and nuts | | | | | | | | | | | | | | | MS | S bolts and r | nuts | | | | | | | | | M24 X 750 anchor bolt with two nuts and washers | 24*6 | X | 37 | | 3.09 | 444.960 | 5/311 | | | | | | M16 X 30 long
hexagonal bolt with
washer | 32*6 | | | | 0.05 | 9.601 | 33/331 | | | | | | M16 X 60 long hexagonal bolt with nut and washer | thereEn | gineeri | ng Org | anisatio | nso.15 | 7.200 | 37/311 | | | | | | M16 X 40 Hex screw
bolt with nut and
washer | 48*6 | Χ. | |) <u>F</u> | 0.12 | 34.560 | 38/31 | | | | | | M 12 X 100 Hex bolt, nut and washer | 18*6 | | | | 0.27 | 29.161 | 32/312 | | | | | | M 30 X 135 Hex bolt, nut and washer | 4*6 | | | | 0.75 | 18.000 | 33/312 | | | | | | M 12 X 60 Hex bolt, nut and washer | 20*6 | | | | 0.08 | 9.600 | 15/313 | | | | | | M 20 X 100 Hex bolt, nuts and washer | 8*6 | | | | 0.33 | 15.840 | 20/314 | | | | | | M 16 X 100 Hex bolt, nuts and washer | 8*6 | | | | 0.25 | 12.000 | 21/314 | | | | | | M 16 X 90 Hex bolt, nuts and washer | 32*6 | | | | 0.2 | 38.401 | 22/314 | | | | | | M 8 hexagonal screw with nut and washer | 16*6 | | | | 0.05 | 4.801 | 12/31 | | | | | | M 12 X 40 Hex bolts, nuts and washer | 22*6 | | | | | 0.11 | 14.520 | 13/315 | |---|---|--|--|---|--|---|--|--|---| | | M 6 X 20 hexagonal screw | 1*6 | | | | | 0.03 | 0.180 | 11/319 | | | M10 X 60 Hex. bolt, nut and washer | 2*6 | | | | | 0.21 | 2.520 | 13/319 | | | M10 X 50 Hex. bolt, nut and washer | 4*6 | | | | | 0.2 | 4.801 | 14/319 | | | M10 X 20 Hex. bolt, nut and washer | 2*6 | | | | | 0.15 | 1.800 | 15/319 | | | | | | | | Tot | al Quantity | 647.945 k | g | | | | | 1 | | Total | l Deducte | ed Quantity | 0.000 kg | | | | | | 18 | | 7 | Net Tot | al Quantity | 647.945 k | g | | | | 1 | 3 | Say 64 | 7.945 I | kg @ Rs | 77.64 / kg | Rs 50 | 306.45 | | | including cost of labour | , machinery | , incident | specificat
tal and ha | | charges | for fixing ha | ndrails and a | | | | including cost of labour etc complete but exclude | | al already | tal and ha | ndling and we | eight of p | • | | | | | etc complete but exclud | | al already | tal and ha | ndling and we | eight of p | • | | | | | etc complete but exclud | ding materia | al already | tal and ha | ndling and we | eight of p | • | d rails etc | | | | etc complete but exclud | ding materia | al already | tal and ha | ndling and we | eight of p | • | 58515.892 | | | | etc complete but exclud | ther En 58515.892 | al already | tal and ha | ndling and we | eight of p | • | 58515.892
16722.983 | allied works | | | etc complete but exclud | ther En 58515.892 | al already | tal and ha | ndling and we bolt an | eight of pind nuts | ns | 58515.892
16722.983
12822.594 | allied works | | | etc complete but exclud | ther En 58515.892 | al already | tal and ha | ndling and we bolt an | Tot | ipes for han | 58515.892
16722.983
12822.594
88061.469 | kg | | | etc complete but exclud | ther En 58515.892 | al already | tal and har supplied s, section, | ndling and we bolt an Tg ar | Tot Net Tot | ipes for han | 58515.892
16722.983
12822.594
88061.469
0.000 kg
88061.469 | kg | | 7 | etc complete but exclud | d surfaces of a d cleaned stesting all p | Plates Plates of the hoi ss of 150 ining not Il coats in surface to painting m | Say 8806 sisting bridge by class A senaterials, a | Total Total 11.469 I ge comons periming ostandarall incid | Tot I Deducte Net Tot kg @ Rs Inponents or each cof zinc on coat at air rd of IS14 lental challental challental challental | al Quantity al Quantity al Quantity 58.93 / kg with two co oat over two dry film thic ny rate is no 4177 includi | 58515.892 16722.983 12822.594 88061.469 0.000 kg 88061.469 Rs 518 ats of synther coats of pkness of 70-t less than 3 ng cost of a f T & P etc of the synthem | kg kg 9462.37 etic enamel riming coat +/- microns. 150 microns Il materials, complete as | | | | | 1 | | | | |---|------------------|---------------|-----------------------|---------------------------|---------|--------| | Hand rails of Hoist
bridge - GI pipe, NB
32mm | 2*6 | 12.300 | | 0.13 | 19.631 | 28/311 | | Hand rails of ladder -
GI pipe, NB 32mm | 2*2 | 7.500 | | 0.13 | 3.990 | | | | CI | nequered pla | ate of type I | (12 X 5) Hoist | _ | | | MS checquered plate - 18 mm | 2*6 | 2.450 | 2.720 | 2.0 | 159.936 | 19/311 | | MS checquered plate - 28 mm | 4*6 | 1.120 | 1.570 | 2.0 | 84.404 | 20/311 | | MS checquered plate - 38 mm | 2*6 | 0.940 | 1.050 | 2.0 | 23.688 | 21/311 | | MS checquered plate - 48 mm | 2*6 | 0.400 | 1.255 | 2.0 | 12.048 | 22/311 | | MS checquered plate - 58 mm | 2*6 | 0.855 | 2.450 | 2.0 | 50.274 | 23/311 | | MS checquered plate - ladder 8 mm | 30*6 | 0.600 | 0.300 | 2.0 | 64.800 | | | | 6 Nos | of shutters o | of size 12 m | width X 5 m height | | | | Longitudinal girder web | th e reEn | g13.990ri | ng ^{1.000} g | anisations ^{2.0} | 335.760 | 2/311 | | Longitudinal girder flange | 4*6 | 13.990 | 0.200 | 2.0 | 134.304 | 1/311 | | Foundation base plate | 4*6 | 0.450 | 0.500 | 2.0 | 10.800 | 3a/311 | | Base plate | 4*2 | 0.450 | 0.500 | 2.0 | 3.600 | 3/311 | | Stiffener on main girder with base plate | 16*2 | 1.020 | 0.235 | 2.0 | 15.341 | 4/311 | | Plate on foundation rod | 24*2 | 0.100 | 0.100 | 2.0 | 0.961 | 6/311 | | Vertical stiffener on main girder below C5 | 4*6 | 0.620 | 0.085 | 2.0 | 2.530 | 13/311 | | Vertical stiffener on
main girder below C6
and C4 | 8*6 | 0.720 | 0.085 | 2.0 | 5.876 | 14/311 | | Vertical stiffener on main girder below C7 | 18*6 | 0.820 | 0.085 | 2.0 | 15.056 | 15/311 | | | | | | | | 1 | | |--|-------------------------------------|--------------------------|-----------------------|----------|-------------------|--------|--------| | Vertical stiffener o
main girder belo
pulley cross girde | w 4*6 | 0.870 | 0.085 | | 2.0 | 3.550 | 16/311 | | Vertical stiffener o | n
34*6 | 1.000 | 0.085 | | 2.0 | 34.680 | 17/311 | | Supporting plate for hand rail post | or
24*6 | 0.150 | 0.200 | |
2.0 | 8.640 | 24/311 | | Pulley bracket | 4*6 | 1.596 | 0.550 | | 2.0 | 42.135 | 29/311 | | Pad plate for pulley | 8*6 | 0.200 | 0.200 | | 2.0 | 3.841 | 32/311 | | Lock plate for pulley | 16*6 | 0.120 | 0.050 | | 2.0 | 1.153 | 31/311 | | Spacer OD 200, ID 92 | 2 8*6 | 0.200 | 0.200 | | 2.0 | 3.841 | 35/311 | | Base plate for work reducer | n
1*6 | 0.400 | 0.450 | | 2.0 | 2.160 | 17/312 | | Stiffener plate for base plate 1 (work reducer unit) | | 0.090 | 0.090 | | 2.0 | 0.389 | 18/312 | | Stiffener plate for base plate 2 (work reducer unit) | 3 5 7 20 0 | 0.100 | 0.155 | | 2.0 | 0.372 | 20/312 | | Base plate for brak
unit | e
Oth é ř ⁶ Er | gi <mark>0.150</mark> ri | ng ^{0.500} g | anisatio | ns ^{2.0} | 0.900 | 21/312 | | Stiffener plate for brake unit base plate | 4*6 | 0.065 | 0.065 | F | 2.0 | 0.203 | 23/312 | | Base plate for motor | 1*6 | 0.250 | 0.250 | | 2.0 | 0.750 | 24/312 | | Stiffener plate for motor base 1 | 4*6 | 0.070 | 0.070 | | 2.0 | 0.236 | 25/312 | | Stiffener plate for motor base 2 | 1*6 | 0.070 | 0.100 | | 2.0 | 0.085 | 27/312 | | Diaphragm plat
(Rope drum) | e
4*6 | 0.350 | 0.600 | | 2.0 | 10.080 | 13/314 | | Cover plate (Rop | e
4*6 | 0.280 | 0.120 | | 2.0 | 1.613 | 14/314 | | Stiffener plate - 1 (R diaphragm)1 | 8*6 | 0.080 | 0.185 | | 2.0 | 1.421 | 11/314 | | Stiffener plate - 2 (R diaphragm)2 | O 4*6 | 0.080 | 0.130 | | 2.0 | 0.500 | 12/314 | | Spacer (RD) OD:25
ID:81 8THK | 0 4*6 | 0.250 | 0.250 | | 2.0 | 3.000 | 15/314 | |
 | • | | 1 | | | | | |---|------------------|-------------|-----------------------|----------|--------|---------|--------| | Plummer block base plate 1 | 4*6 | 0.100 | 0.315 | | 2.0 | 1.512 | 16/314 | | Plummer block base plate 2 | 4*6 | 0.100 | 0.280 | | 2.0 | 1.345 | 17/314 | | Additional plate on RD base frame 1 | 2*6 | 0.090 | 1.760 | | 2.0 | 3.802 | 7/314 | | Additional plate on RD base frame 2 | 2*6 | 0.090 | 0.780 | | 2.0 | 1.685 | 8/314 | | Stiffener plate on RD base frame 1 | 10*6 | 0.170 | 0.276 | | 2.0 | 5.631 | 9/314 | | Stiffener plate on RD base frame 2 | 2*6 | 0.080 | 273.000 | | 2.0 | 524.160 | 10/314 | | Drum cover body (side and top) | 2*6 | 2.640 | 0.560 | | 2.0 | 35.482 | 6/315 | | Drum cover body (side) | 4*6 | 0.710 | 1.675 | W | 2.0 | 57.084 | 7/315 | | Door sheet | 2*6 | 0.210 | 0.310 | 1 50 | 2.0 | 1.563 | 11/315 | | DU cover body(side) - | 4*6 | 1.650 | 0.980 | | 2.0 | 77.616 | 8/313 | | DU cover body(side) - | th e reEn | g 19.980 ri | ng ^{0.820} g | anisatio | ns 2.0 | 19.287 | 9/313 | | DU cover body(side) - | 2*6 | 0.570 | 0.820 | F | 2.0 | 11.218 | 10/313 | | DU cover (Top) | 2*6 | 0.820 | 1.750 | | 2.0 | 34.440 | 11/313 | | Plate | 2*6 | 0.150 | 0.150 | | 2.0 | 0.540 | 12/313 | | Plate | 4*6 | 0.500 | 1.030 | | 2.0 | 24.720 | 13/313 | | Base plate for dial gauge worm reducer | 1*6 | 0.300 | 0.470 | | 2.0 | 1.692 | 2/319 | | Stiffener support plate for worm reducer base 1 | | 0.185 | 0.150 | | 2.0 | 0.666 | 4/319 | | Stiffener support plate for base 2 | 1*6 | 0.170 | 0.150 | | 2.0 | 0.307 | 4a/319 | | Shim for dial assembly | 1*6 | 0.060 | 0.165 | | 2.0 | 0.119 | 5/319 | | Plummer block base plate | 1*6 | 0.280 | 0.090 | | 2.0 | 0.303 | 6/319 | | Stiffener support plate for plummer block base 1 | 2*6 | 0.100 | 0.090 | | 2.0 | 0.216 | 7/319 | |--|----------------------|-------------------------|---------------|----------|-------------------|--------|---------| | Needle | 1*6 | 0.170 | 0.040 | | 2.0 | 0.082 | 10/319 | | Needle base | 1*6 | 0.040 | 0.040 | | 2.0 | 0.020 | 10a/319 | | Plate for dial gauge | 2*6 | 0.230 | 0.276 | | 2.0 | 1.524 | 21/319 | | | | SI | nutters - 6 N | os | | | | | Cross Member - C7
(ISMC 200 X 75) | 8*6 | 2.490 | | | 0.7 | 83.664 | 11/311 | | Cross Member - C4 & C6 (ISMC 300 X 90) | 2*6 | 2.490 | | | 0.96 | 28.685 | 8/311 | | Cross Member
support for pulley
bracket - (ISMC 150 X
75) | 4*6 | 1.174 | | | 0.6 | 16.906 | 12/311 | | Cross Member - C5
(ISMB 400 X 140) | 2*6 | 2.490 | | 138 | 1.36 | 40.637 | 7/311 | | Cross Member - C3
(ISMC 200 X 75) | 4*6 | 1.246 | | | 0.7 | 20.933 | 9/311 | | Cross Member - C2
(ISMC 200 X 75) | th & *6En | gi1 ₁ 169 ri | ng Orga | anisatio | ns ^{0.7} | 9.820 | 10/311 | | Supporting angle for cross member ISA 75 X 75 X 8 | | 0.100 | | E | 0.3 | 6.120 | 18/311 | | Toe guard hand rail
(75 X 75 X 8) | 2*6 | 13.250 | | | 0.3 | 47.700 | 25/311 | | Hand rail post (65 X 65 X 6) | 24*6 | 1.250 | | | 0.26 | 46.801 | 26/311 | | Flat on hand rail | 2*6 | 13.990 | 0.050 | | 2.0 | 16.788 | 26/311 | | 90 dia pulley shaft | 4*6 | 0.210 | | | 0.28 | 1.412 | 30/311 | | Shaft for manual operation 40 dia 1 | 1*6 | 0.408 | | | 0.13 | 0.319 | 9/312 | | Shaft for manual operation 40 dia 2 | 1*6 | 0.550 | | | 0.13 | 0.430 | 10/312 | | DU Base Frame - 1
ISMC 150 X 75 | 2*6 | 1.750 | | | 0.6 | 12.600 | 11/312 | | DU Base Frame - 2
ISMC 150 X 75 | 3*6 | 0.700 | | | 0.6 | 7.560 | 12/312 | | | | | T | | | 1 | | |--|---------|------------------|---------|----------|------------|--------|--------| | Manual operation
support - 1 ISA 75 X
75 X 8 | 4*6 | 0.800 | | | 0.3 | 5.761 | 14/312 | | Manual operation
support - 2 ISA 75 X
75 X 8 | 2*6 | 0.400 | | | 0.3 | 1.441 | 15/312 | | Manual operation
support - 3 ISA 75 X
75 X 8 | 2*6 | 0.500 | | | 0.3 | 1.800 | 16/312 | | Worm reducer base plate support ISA 100 X 100 X 8 | 2*6 | 0.700 | | | 0.4 | 3.360 | 19/312 | | Brake base plate
support ISA 75 X 75 X
8 | 2*6 | 0.700 | A. | | 0.3 | 2.520 | 22/312 | | Motor base plate
support ISA 75 X 75 X
8 | 2*6 | 0.700 | DA | H | 0.3 | 2.520 | 26/312 | | Plummer support ISA
75 X 75 X 8 | 1*6 | 0.250 | | | 0.3 | 0.450 | 28/312 | | Rod 1 for hand operation | ther En | 0.550
gineeri | ng Orga | anisatio | 0.05
NS | 0.166 | 29/312 | | Handle | 1*6 | 0.367 | | 1 | 0.05 | 0.111 | 31/312 | | Ladder - main frame,
ISMC 200 X 75 | 2*2 | 7.500 | | | 0.7 | 21.000 | Ladder | | Ladder - Hand rail
support, ISA 65 X 65
X 6 | | 1.000 | | | 0.26 | 6.240 | Ladder | | Ladder - step, ISA 40
X 40 X 6 | 30*2 | 2.400 | | | 0.16 | 23.040 | Ladder | | Ladder hand rail flat | 2*2 | 7.500 | 0.050 | | 2.0 | 3.000 | Ladder | | Rope drum handle
16dia | 4*6 | 0.300 | | | 0.05 | 0.360 | 10/315 | | Rope drum handle
16dia | 2*6 | 0.400 | | | 0.05 | 0.241 | 10/315 | | Rope drum handle
16dia | 2*6 | 0.280 | | | 0.05 | 0.169 | 10/315 | | Rope drum cover -
ISA 35 X 35 X 5 | 4*6 | 2.640 | | | 0.14 | 8.871 | 1/315 | | Rope drum cover -
ISA 35 X 35 X 5 | 4*6 | 0.570 | | | 0.14 | 1.916 | 2/315 | |---------------------------------------|-----|------------------|-----------|----------|------------|--------|--------| | Rope drum cover -
ISA 35 X 35 X 5 | 2*6 | 0.946 | | | 0.14 | 1.590 | 3/315 | | Rope drum cover -
ISA 35 X 35 X 5 | 1*6 | 0.082 | | | 0.14 | 0.069 | 4a/315 | | Rope drum cover -
ISA 35 X 35 X 5 | 2*6 | 0.205 | | | 0.14 | 0.345 | 5/315 | | Rope drum cover -
ISA 35 X 35 X 5 | 2*6 | 0.135 | | | 0.14 | 0.227 | 4/315 | | Rope drum cover -
ISA 35 X 35 X 5 | 8*6 | 0.500 | .a | | 0.14 | 3.361 | 5a/315 | | Rope drum base frame ISMC 300 X 90 | 2*6 | 1.760 | | | 0.96 | 20.276 | 6/314 | | Rope drum base frame ISMC 300 X 90 | 2*6 | 1.250 | 52 | | 0.96 | 14.400 | 5/314 | | Rope drum base frame ISMC 300 X 90 | 2*6 | 0.980 | | | 0.96 | 11.290 | 4/314 | | Rope drum base frame ISMC 300 X 90 | 2*6 | 0.972 | in of the | | 0.96 | 11.198 | 3/314 | | Rope drum base frame ISMC 300 X 90 | 2*6 | gineeri
0.870 | ng Orga | anisatio | ns
0.96 | 10.023 | 2/314 | | Rope drum base frame ISMC 300 X 90 | 2*6 | 0.270 | | | 0.96 | 3.111 | 1/314 | | Rope drum cover flat | 4*6 | 0.050 | 1.000 | | 2.0 | 2.401 | | | Rope drum cover flat | 2*6 | 0.050 | 1.406 | | 2.0 | 1.688 | | | DU Cover frame - 1
ISA 35 X 35 X 6 | 4*6 | 0.840 | | | 0.14 | 2.823 | 1/313 | | DU Cover frame - 2
ISA 35 X 35 X 6 | 4*6 | 1.087 | | | 0.14 | 3.653 | 2/313 | | DU Cover frame - 3
ISA 35 X 35 X 6 | 4*6 | 0.273 | | | 0.14 | 0.918 | 3/313 | | DU Cover frame - 4
ISA 35 X 35 X 6 | 4*6 | 1.000 | | | 0.14 | 3.361 | 4/313 | | DU Cover frame - 5
ISA 35 X 35 X 6 | 4*6 | 2.400 | | | 0.14 | 8.064 | 5/313 | | | ISA 35 X 35 X 6 DU Cover frame - 7 | 6*6 | 0.770 | | | 0.14 | 3.881 | 7/313 | |---|--|---|---|--
--|--|---|-------------------------------------| | | ISA 35 X 35 X 6 Round handle 12 dia | 4*6 | 0.300 | | | 0.03 | 0.216 | 14/313 | | | | | 0.300 | | | 0.03 | 0.210 | 14/313 | | | Dial assembly frame
ISMC - 100 X 50 | 2*6 | 0.925 | | | 0.4 | 4.440 | 3/319 | | | Dial assembly round
20 dia | 1*6 | 0.220 | | | 0.06 | 0.080 | 8/319 | | | Dial assembly ISA 50 X 50 X 6 | 2*6 | 0.050 | | | 0.2 | 0.121 | 9/319 | | | | | B | 10.5 | Tota | al Quantity | 2401.262 | sqm | | | | | -n | To | otal Deducte | d Quantity | 0.000 sqm | l | | | | 1 | 43 6 | | Net Tota | al Quantity | 2401.262 | sqm | | | | | Say 2 | 2401.262 sq | m @ Rs 966 | 6.78 / sqm | Rs 232 | 1492.08 | | 8 | Erection of the hoisting anchoring it; setting ar machinery, incidental a already supplied | nd aligning t | he covers o | of the hoisting and lift charg | ng unit etc comp | omplete incl
plete but exc | uding cost o | f all labo | | | anchoring it; setting an machinery, incidental a already supplied | nd aligning t
and conveya | he covers once, lead a | of the hoisting and lift charg | ng unit etc co | omplete include the but excepts | uding cost o | f all labou
of materia | | | anchoring it; setting an machinery, incidental a already supplied | nd aligning tand conveya | he covers once , lead a | of the hoisting and lift charg | ng unit etc comp | omplete incl
plete but exc | uding cost o | f all labo
of materia | | | anchoring it; setting ar machinery, incidental a already supplied Hand rails of hoist | nd aligning t
and conveya | he covers once, lead a | of the hoisting and lift charg | ng unit etc comp | omplete include the but excepts | uding cost o | f all labo
of materia | | | anchoring it; setting ar machinery, incidental a already supplied Hand rails of hoist bridge | nd aligning to and conveyand ther En | he covers once , lead a gineeri 12.300 | of the hoisting and lift charg | ng unit etc copes etc companisation | omplete include the but excepts 3.09 | uding cost of sluding | f all labo
of materia | | | anchoring it; setting ar machinery, incidental a already supplied Hand rails of hoist bridge | nd aligning to and conveyand ther En | he covers once , lead a gineeri 12.300 | of the hoisting and lift charge Hand rails | ng unit etc copes etc companisation | omplete include the but excepts 3.09 | uding cost of sluding | f all labo
of materia | | | anchoring it; setting ar machinery, incidental a already supplied Hand rails of hoist bridge Hand rails of ladder | ther En | he covers once , lead a gineeri 12.300 | of the hoisting and lift charge Hand rails | ng unit etc copes etc companisation | omplete include the but excepts 3.09 | uding cost of sluding | f all labo | | | anchoring it; setting ar machinery, incidental a already supplied Hand rails of hoist bridge Hand rails of ladder Plates | ther En 2*6 2*2 58515.892 | he covers once , lead a gineeri 12.300 | of the hoisting and lift charge Hand rails | ng unit etc copes etc companisation | omplete include the but excepts 3.09 | 456.085
92.700 | f all labo
of materia | | | anchoring it; setting ar machinery, incidental a already supplied Hand rails of hoist bridge Hand rails of ladder Plates Sections | 2*6
2*2
58515.892
16722.983 | he covers once , lead a gineeri 12.300 | of the hoisting and lift charge Hand rails | ng unit etc copes etc companisation | omplete include the but excepts 3.09 | 456.085
92.700
58515.892 | f all labo
of materia | | | anchoring it; setting ar machinery, incidental a already supplied Hand rails of hoist bridge Hand rails of ladder Plates Sections Cheq. plate | 2*6
2*2
58515.892
16722.983
12822.594 | he covers once , lead a gineeri 12.300 | of the hoisting and lift charge Hand rails | anisatio | omplete include the but excepts 3.09 | 456.085
92.700
58515.892
16722.983
12822.594 | f all labor
of materia
28/311 | | | anchoring it; setting ar machinery, incidental a already supplied Hand rails of hoist bridge Hand rails of ladder Plates Sections Cheq. plate | 2*6
2*2
58515.892
16722.983
12822.594 | he covers once , lead a gineeri 12.300 | of the hoisting and lift charge Hand rails section, bo | anisatio | 3.09 3.09 al Quantity | 456.085 92.700 58515.892 16722.983 12822.594 646.925 | f all labor
of materia
28/311 | | | anchoring it; setting ar machinery, incidental a already supplied Hand rails of hoist bridge Hand rails of ladder Plates Sections Cheq. plate | 2*6
2*2
58515.892
16722.983
12822.594 | he covers once , lead a gineeri 12.300 | of the hoisting and lift charge Hand rails section, bo | anisation anisat | 3.09 3.09 al Quantity | 456.085 92.700 58515.892 16722.983 12822.594 646.925 89257.179 | f all labor
of materia
28/311 | | | anchoring it; setting ar machinery, incidental a already supplied Hand rails of hoist bridge Hand rails of ladder Plates Sections Cheq. plate | 2*6
2*2
58515.892
16722.983
12822.594 | he covers once, lead a gineeri 12.300 7.500 Plates, | of the hoisting and lift charge Hand rails section, bo | anisation anisat | 3.09 3.09 al Quantity d Quantity al Quantity | 456.085 92.700 58515.892 16722.983 12822.594 646.925 89257.179 0.000 kg | f all labo of materia 28/311 kg | | 1 | 85.128 | | | | | | | | |---|--|---|---
--|--|--|--|---| | | Providing Line shaft ,ma | aterial : MS | rolled/ forge | ed steel Line shaft | | | | | | | 65 mm Dia line shaft | 2*6 | 4.150 | Line Shart | | 26.0 | 1294.801 | | | | Johnn Dia inio orian | | 1 | | Tota | al Quantity | 1294.801 | ka | | | | | | To | otal Deducte | | 0.000 kg | | | | | | | | | al Quantity | 1294.801 | kg | | | | | S | Say 1294.801 | kg @ Rs 12 | 28.95 / kg | Rs 160 | 6964.59 | | 2 | 85.125 Conveying and erecting capacity on the hoisting direction of department incidental and convey | ng bridge a
ntal officer | nd correcti
at site incl | ng the align | ment as fai | r as possib | le manually | as per th | | | | 1 | S | Shutters - 6nd | os | 5 | | | | | Erection for 30 ton | 6 | | 20/1 | 441 | | 6.000 | | | | | NA | DE | 認见 | Tota | al Quantity | 6.000 no | | | | | | d Quantity | 0.000 no | on o | Net Tota | al Quantity | 6.000 no | | | 3 | od139261/2019 2020 | ther En | gineeri | Say 6.000 no | o @ Rs 5576 | 66.26 / no | | 4597.56 | | 3 | od139261/2019_2020 Supplying and stacking of about 0.45 m/min(+/mm tested galvanized driven by TEFC squirre driven through self lock with bearings for line s brake assembly mane equipments as per draw 35 T capacity rope drur | of 35 Tonr
(-10%) throu
wire rope (el cage indu-
ting worm re-
thaft suppor-
ual operation
wings specified
in hoisting u | ne capacity ugh pulley a 6/36 construction moto educer and o ted at prop ng system fications an | rope drum harrangements uction, fibre r hoist duty to open gear re er intervals a s, electrical d statutory re | oisting unit of the core having aduction unit and including accessories and increments | having 12 names of fall generating of capacity no including 2 generating cost of eles, limit sy | Rs 334 In lift at a hoise on either secapacity 342 In lift at a hoise on either secapacity
342 In lift at a hoise on either secapacity 342 In lift at a hoise on either secapacity 342 In lift at a hoise on either secapacity 342 In lift at a | sting sperside with 2
250 Kg at
7.5 HP at
nmer blocetic thrust | | 3 | Supplying and stacking of about 0.45 m/min(+/mm tested galvanized driven by TEFC squirred driven through self lock with bearings for line subrake assembly many equipments as per draw | g of 35 Tonr
(-10%) throu
wire rope (el cage indu-
ting worm re-
thaft suppor-
ual operation
wings specified
in hoisting u | ne capacity ugh pulley a 6/36 construction moto educer and o ted at prop ng system fications an | rope drum harrangements uction, fibre r hoist duty to open gear re er intervals a s, electrical d statutory re | oisting unit of the core having aduction unit and including accessories and increments | having 12 names of fall generating of capacity no including 2 generating cost of eles, limit sy | Rs 334 In lift at a hoise on either secapacity 342 In lift at a | sting specified with 2
250 Kg at
7.5 HP at
nmer blocetic thrust
ther safe | | 3 | Supplying and stacking of about 0.45 m/min(+/mm tested galvanized driven by TEFC squirred driven through self lock with bearings for line subrake assembly many equipments as per draw 35 T capacity rope drum Supplying and stacking of 35 Tonne capacity rope drum | g of 35 Tonr
(-10%) throu
wire rope (el cage indu-
ting worm re-
thaft suppor-
ual operation
wings specified
in hoisting u | ne capacity ugh pulley a 6/36 construction moto educer and o ted at prop ng system fications an | rope drum harrangements uction, fibre r hoist duty to open gear re er intervals a s, electrical d statutory re | oisting unit of swith 4 numbers of the 5 | having 12 names of fall generating of capacity no including 2 generating cost of eles, limit sy | Rs 334 In lift at a hoise on either secapacity 342 In less than nos. of pluncectro magner witch and one te < br > Rate | sting sperside with 2
250 Kg at
7.5 HP at
nmer blocetic thrust | | 3 | Supplying and stacking of about 0.45 m/min(+/mm tested galvanized driven by TEFC squirred driven through self lock with bearings for line subrake assembly many equipments as per draw 35 T capacity rope drum Supplying and stacking of 35 Tonne capacity rope drum | g of 35 Tonr
(-10%) throu
wire rope (el cage indu-
ting worm re-
thaft suppor-
ual operation
wings specified
in hoisting u | ne capacity ugh pulley a 6/36 construction moto educer and o ted at prop ng system fications an | rope drum harrangements uction, fibre r hoist duty to open gear re er intervals a s, electrical d statutory re items rate in | oisting unit of swith 4 numbers of the 5 | having 12 name of fall grading 2 ground of each eac | Rs 334 In lift at a hoise on either secapacity 342 In less than nos. of plunectro magneritch and obte-br>Rate 6.000 | sting sperside with 2
250 Kg at
7.5 HP at
nmer blocetic thrust | | 3 | Supplying and stacking of about 0.45 m/min(+/mm tested galvanized driven by TEFC squirred driven through self lock with bearings for line subrake assembly many equipments as per draw 35 T capacity rope drum Supplying and stacking of 35 Tonne capacity rope drum | g of 35 Tonr
(-10%) throu
wire rope (el cage indu-
ting worm re-
thaft suppor-
ual operation
wings specified
in hoisting u | ne capacity ugh pulley a 6/36 construction moto educer and o ted at prop ng system fications an | rope drum harrangements uction, fibre r hoist duty to open gear re er intervals a s, electrical d statutory re items rate in | oisting unit of the second uni | having 12 name of fall grading 2 ground of each eac | Rs 334 In lift at a hoise on either secapacity 342 In lift at a | sting specified with 2
250 Kg at
7.5 HP at
nmer blocetic thrust
ther safe | | 3 | Supplying and stacking of about 0.45 m/min(+/mm tested galvanized driven by TEFC squirred driven through self lock with bearings for line subrake assembly many equipments as per draw 35 T capacity rope drum Supplying and stacking of 35 Tonne capacity rope drum | g of 35 Tonr
(-10%) throu
wire rope (el cage indu-
ting worm re-
thaft suppor-
ual operation
wings specified
in hoisting u | ne capacity ugh pulley a 6/36 construction moto educer and o ted at prop ng system fications and nit (all MR) | rope drum harrangements uction, fibre r hoist duty to open gear re er intervals a s, electrical d statutory re items rate in | oisting unit of swith 4 number of the 5 | having 12 name of fall gradients gradien | Rs 334 In lift at a hoise on either secapacity 342 In lift at a hoise on either secapacity 342 In lift at a hoise of plun and life of the section and of the section and of the section and life | sting specified with 2
250 Kg at
7.5 HP at
nmer blocetic thrust
ther safe | | | conducting Trial run | | CL | outtoro 6 = | 00 | | | | |-------|---|------------------------------|--|---|---
--|--|--| | | | | Sr | nutters - 6 n | os
 | | | | | | | 6 | | | | | 6.000 | | | | | | | | Tota | al Quantity | 6.000 set | | | | | | | Тс | tal Deducte | d Quantity | 0.000 set | | | | | | | | Net Tota | al Quantity | 6.000 set | | | | | | Sa | ay 6.000 set | @ Rs 1688 | 39.83 / set | Rs 101 | 338.98 | | | Providing Dial guage a accessories. | ssembly w | 10m | 60 | reducer, c | hain & spro | ckets, Frame | e and ot | | | | | 1 | Dial gauge | | | | | | | Dial gauge assembly | 6 | 434 | | | | 6.000 | r | | | | f L" | NAG | SA Z | Tota | al Quantity | 6.000 no | | | | | 12 | | To | tal Deducte | d Quantity | 0.000 no | | | | | 101 | 1260 | | Net Tota | al Quantity | 6.000 no | | | | | | | | | | | | | 6 | od139469/2019_2020
Cost of supplying and s | stacking WI | The Heigh | a and | 0 @ Rs 221 | | | 2 700.68
ON, RIG | | 6 | | ANISED M | RE ROPE : | 24mm dia V | WIRE ROPE
TS 180 KG
D IS 2266 | 6 X 36 CC
/MM2 HAV
- 1989 | ONSTRUCTION OF THE PROPERTY | ON, RIG
NG LO | | 6 | Cost of supplying and s
HAND LAY UNGALV
CAPACITY OF 336KI | ANISED M
N (34250K | RE ROPE :
IAIN FIBER
(g), CONFO | 24mm dia V
CORE UI
RMING TO
Wire rope | WIRE ROPE
TS 180 KG
D IS 2266
Tota | 6 X 36 CC
/MM2 HAV
- 1989
al Quantity | 720.000 m | ON, RIG
NG LO | | 6 | Cost of supplying and s
HAND LAY UNGALV
CAPACITY OF 336KI | ANISED M
N (34250K | RE ROPE :
IAIN FIBER
(g), CONFO | 24mm dia V
CORE UI
RMING TO
Wire rope | VIRE ROPE TS 180 KG D IS 2266 Total | 6 X 36 CC
/MM2 HAV
- 1989
al Quantity | ONSTRUCTION OF THE PROPERTY | ON, RIG
NG LO
netre | | 6 | Cost of supplying and s
HAND LAY UNGALV
CAPACITY OF 336KI | ANISED M
N (34250K | RE ROPE 1
IAIN FIBER
(g), CONFO
120.000 | 24mm dia V
CORE UT
RMING TO
Wire rope | VIRE ROPE TS 180 KG D IS 2266 Total | 6 X 36 CO
/MM2 HAV
- 1989
al Quantity
d Quantity | 720.000 met | ON, RIG
NG LO
netre
re | | | Cost of supplying and s
HAND LAY UNGALV
CAPACITY OF 336KI | ANISED M
N (34250K | RE ROPE 1
IAIN FIBER
(g), CONFO
120.000 | 24mm dia V
CORE UT
RMING TO
Wire rope | VIRE ROPE TS 180 KG D IS 2266 Total Total Total Deducte Net Total | 6 X 36 CO
/MM2 HAV
- 1989
al Quantity
d Quantity | 720.000 met | DN, RIG
NG LO
netre
re
netre | | | Cost of supplying and s HAND LAY UNGALY CAPACITY OF 336KI Wire rope 24mm | ANISED M
N (34250K
1*6 | RE ROPE : IAIN FIBER (g), CONFO | 24mm dia V
CORE UT
PRMING TO
Wire rope
To | Total Deducte Rs 464. | al Quantity d Quantity al Quantity Control Con | 720.000 720.000 meti 720.000 m 0.000 meti 720.000 m Rs 334 | DN, RIG
NG LO
netre
re
netre | | | Cost of supplying and s HAND LAY UNGALY CAPACITY OF 336KI Wire rope 24mm Description | ANISED M
N (34250K
1*6 | Say 720 | 24mm dia V CORE UT RMING TO Wire rope To 0.000 metre B edded parts | Total Deducted Net Total @ Rs 464. | al Quantity al Quantity CF hutters 8 no | 720.000 720.000 metrosic metrosi | DN, RIG
NG LO
netre
re
netre | | SI No | Cost of supplying and s HAND LAY UNGALY CAPACITY OF 336KI Wire rope 24mm Description 12 F6 - Fabrication 85.101 | ANISED M
N (34250K
1*6 | Say 720 L Deply of ember | 24mm dia V CORE UT RMING TO Wire rope To 0.000 metre B edded parts | Total Deducted Net Total Rs 464. B for lock sets of convey | al Quantity al Quantity CF hutters 8 no | 720.000 720.000 metrosic metrosi | DN, RIG
NG LO
netre
re
netre | | SI No | Cost of supplying and s HAND LAY UNGALY CAPACITY OF 336KI Wire rope 24mm Description 12 F6 - Fabrication 85.101 | ANISED M
N (34250K
1*6 | Say 720 L Deply of ember | 24mm dia V CORE UT RMING TO Wire rope To 0.000 metre B edded parts | Total Deducted Net Total Rs 464. B for lock sets of convey | al Quantity al Quantity CF hutters 8 no | 720.000 720.000 metrosic metrosi | ON, RIG
NG LO
netre
re | | | Plate at sill beam joint | 4*2 | 0.100 | 0.2218 | 0.010 | 7850.0 | 13.930 | 102/4 | |---|---|--------------|----------------|--------------|--------------|--------------|---------------------|----------------------------------| | | | | | | Tota | al Quantity | 11725.464 | kg | | | | | | То | tal Deducte | d Quantity | 0.000 kg | | | | | | | | Net Tota | al Quantity | 11725.464 | kg | | | | | S | ay 11725.46 | 64 kg @ Rs | 64.18 / kg | Rs 752 | 540.28 | | 2 | 85.107
Supply of MS round bar | including | cost of conv | eyance char | ges | | | | | | | | Eı | mbedded pa | rts | Γ | | | | | Linear 16mm 325LG
rod | 220*2 | 0.325 | | | 1.58 | 225.654 | 102/1 | | | Sill beam 16mm
325LG rod | 144*2 | 0.325 | A | | 1.58 | 147.701 | 102/3 | | | Guide roller track
16mm 325LG ord | 96*2 | 0.325 | | To | 1.58 | 98.468 | 102/1 | | | Anchor rod hoist unit
embedded parts
30mm | 8*8 | 0.750 | | | 5.54 | 265.920 | 107/1 | | | | 76 | | | Tota | al Quantity | 737.743 kg | g | | | | | No | | tal Deducte | d Quantity | 0.000 kg | | | | () | ther Er | ngineeri | ng Orga | Net Tota | al Quantity | 737.743 k | g | | | | | D) | Say 737.74 | 3 kg @ Rs | 64.18 / kg | Rs 47 | 348.35 | | 3 | 85.102
Supply of MS Tees, And charges | gles, Joists | , ISMB, ISM | C confirming | g to IS20620 | GrA/B includ | ling cost of c | conveya | | | - C | | | MS Sections | | | | | | | Liner ISA 150 X 150 X | 22*2 | 1.020 | | | 22.8 | 1023.265 | 102/9 | | | | | | | | | | | | | Liner ISA 150 X 150 X | 44*2 | 0.225 | | | 22.8 | 451.441 | 102/8 | | | | 44*2
44*2 | 0.225
1.210 | | | 22.8 | 451.441
2427.744 | | | | 10
Liner ISA 150 X 150 X | | | | 0.500 | | | 102/7 | | | 10 Liner ISA 150 X 150 X 10 Liner ISMB 1/2 CUT | 44*2 | 1.210 | | 0.500 | 22.8 | 2427.744 | 102/8
102/7
102/1
102/2 | | | Guide roller track 1/2
ISMB 450 X
150 | 4*2 | 5.950 | | 0.500 | 72.4 | 1723.121 | 102/14 | | | |---|---|-------|-----------|-------------|--------------|-------------|-----------|--------|--|--| | | | | 1 | | Tota | al Quantity | 8625.125 | kg | | | | | | | | To | otal Deducte | d Quantity | 0.000 kg | | | | | | | | | | Net Tota | al Quantity | 8625.125 | kg | | | | | | | | Say 8625.12 | 25 kg @ Rs | 66.13 / kg | Rs 570 | 379.52 | | | | 4 | 85.108 Fabrication, erection and commissioning of Structural steel Embedded parts in IS2062 Grade a accessories as per approved specifications, drawings and directions of deptl officer at site including of labour, machinery, incidental and handling charges etc complete but excluding cost of mate already supplied | | | | | | | | | | | | | | Ca | MS sections | 3 | | | | | | | | Liner ISA 150 X 150 X 10 | 22*2 | 1.020 | | | 22.8 | 1023.265 | 102/9 | | | | | Liner ISA 150 X 150 X
10 | 44*2 | 0.225 | DA | 4 | 22.8 | 451.441 | 102/8 | | | | | Liner ISA 150 X 150 X
10 | 44*2 | 1.210 | | | 22.8 | 2427.744 | 102/7 | | | | | Liner ISMB 1/2 CUT
400 X 140 | 4*2 | 5.660 | a and | 0.500 | 61.6 | 1394.624 | 102/10 | | | | | SILL BEAM ISA 75 X
75 X 8 | 48*2 | 0.2218 | ng Org | amsauc | 8.9 | 189.506 | 102/2 | | | | | Sill beam - ISMC 250
X 80 | 4*2 | 5.820 | | | 30.4 | 1415.424 | 102/1 | | | | | Guide roller track 1/2 ISMB 450 X 150 | 4*2 | 5.950 | | 0.500 | 72.4 | 1723.121 | 102/14 | | | | | | | 8 nos pri | mary embed | lded parts | | | | | | | | Liner connecting plate | 132*2 | 0.067 | 0.067 | 0.010 | 7850.0 | 93.031 | 102/11 | | | | | Liner - plate | 2*2 | 6.200 | 3.730 | 0.016 | 7850.0 | 11618.503 | 102/6 | | | | | Plate at sill beam joint | 4*2 | 0.100 | 0.2218 | 0.010 | 7850.0 | 13.930 | 102/4 | | | | | | | Eı | mbedded pa | rts | | 1 | | | | | | Liner 16mm 325LG
rod | 220*2 | 0.325 | | | 1.58 | 225.940 | 102/12 | | | | | Sill beam 16mm
325LG rod | 144*2 | 0.325 | | | 1.58 | 147.889 | 102/3 | | | | | Guide roller track
16mm 325LG rod | 96*2 | 0.325 | | | 1.58 | 98.593 | 102/15 | | | | | | | 1 | I | | 1 | | | |-------|---|--------------|----------------|--|---------------|--------------------------------|-----------------------|------------------| | | Anchor rod hoist unit
embedded parts
30mm | 8*8 | 0.750 | | | 5.54 | 265.920 | 107/17 | | | | | | | Tota | al Quantity | 21088.931 | kg | | | | | | To | tal Deducte | d Quantity | 0.000 kg | | | | | | | | Net Tota | al Quantity | 21088.931 | kg | | | | | S | ay 21088.93 | 1 kg @ Rs | 75.59 / kg | Rs 159 | 4112.29 | | 5 | od139846/2019_2020
Bending Charge of ISM
charge, labour etc com | | ler track incl | uding mach | nine hire cha | arges, preh | eating charg | es, current | | | Guide roller track 1/2
ISMB 450 X 150 | 4*2 | 5.950 | :M | 0.500 | 72.4 | 1723.121 | | | | | | -1 | | Tota | al Quantity | 1723.121 | кg | | | | 1 | 45 6 | To | tal Deducte | d Quantity | 0.000 kg | | | | | 11 | | 20/2 | Net Tota | al Quantity | 1723.121 | kg | | | | 16 | | Say 1723.12 | 1 kg @ Rs | 16.82 / kg | Rs 28 | 982.90 | | | directions of deptl offic
lead and lift, conveyan
2.6Qtl | | tal and hand | $\Pi \mathcal{S} \setminus \mathcal{H} \mathcal{S}_{\ell}$ | mplete
br> | 1115 | | _ | | | SS plate for roller track | 4*2 | 5.957 | 0.170 | 0.008 | 7850.0 | 508.776 | | | | | | | | Tota | al Quantity | 508.776 kg | 9 | | | | | | To | tal Deducte | d Quantity | 0.000 kg | | | | | | | | Net Tota | al Quantity | 508.776 kg | | | | | | | | | | | 3 | | | | | | Say 508.776 | kg @ Rs 4 | 88.03 / kg | Rs 248 | | | SI No | Description | No | L | Say 508.776 | kg @ Rs 4 | 88.03 / kg | Rs 248 | | | SI No | Description 13 F7 - Supply of r | | L | В | D | CF | Quantity | 297.95 | | SI No | | naterials, f | abrication, | B
and erectio | n of MS dia | CF
mond lock | Quantity
shutter | 297.95 | | | 13 F7 - Supply of r | naterials, f | abrication, | B
and erectio | n of MS dia | CF
mond lock | Quantity
shutter | 297.95 | | | 13 F7 - Supply of r | naterials, f | abrication, | and erection | n of MS dia | CF
mond lock | Quantity
shutter | 297.95 | | | 13 F7 - Supply of r
85.101
Supply of MS plates co | materials, f | abrication, | and erection including co | n of MS dia | cr
mond lock
vance charg | Quantity shutter es | 297.95
Remark | | End box plate | 1*8 | 2.315 | 5.200 | 0.016 | 7850.0 | 12095.783 | 103/2 | |---|------------------|--------------------|------------------------|--------------------|----------------------|-----------|--------| | Pivot box stiffener plate 1 | | 0.490 | 0.616 | 0.016 | 7850.0 | 303.289 | 103/3 | | Pivot box stiffener plate 1a | 2*8 | 0.236 | 0.616 | 0.016 | 7850.0 | 292.148 | 103/3a | | Pivot box stiffener plate 2 | 1*8 | 0.490 | 1.104 | 0.016 | 7850.0 | 543.557 | 103/4 | | Pivot box stiffener plate 2a | 2*8 | 0.236 | 1.104 | 0.016 | 7850.0 | 523.590 | 103/4a | | Pivot box stiffener plate 3 | 1*8 | 0.490 | 1.284 | 0.016 | 7850.0 | 632.180 | 103/5 | | Pivot box stiffener plate 3a | 2*8 | 0.236 | 1.284 | 0.016 | 7850.0 | 608.958 | 103/5a | | Pivot box stiffener plate 4 | 1*8 | 0.490 | 0.926 | 0.016 | 7850.0 | 455.918 | 103/6 | | Pivot box stiffener plate 4a | 2*8 | 0.236 | 0.926 | 0.016 | 7850.0 | 439.170 | 103/6a | | Pivot box stiffener plate 5 | 5*8 | 0.488 | 0.490 | 0.016 | 7850.0 | 1201.339 | 103/7 | | Vertical wood seal support web | th d *8En | gi 5.200 ri | ng ^{0.47} 6ga | an 9.919 io | n 3 850.0 | 1554.426 | 103/9 | | Vertical wood seal support flange 1 | 1*8 | 5.200 | 0.210 | 0.012 | 7850.0 | 822.932 | 103/10 | | Vertical wood seal support flange 2 | 1*8 | 5.200 | 0.500 | 0.012 | 7850.0 | 1959.361 | 103/11 | | Full depth vertical stiffener web 1 | 3*8 | 0.490 | 0.095 | 0.010 | 7850.0 | 87.701 | 103/12 | | Full depth vertical stiffener web 2 | 3*8 | 0.490 | 1.390 | 0.010 | 7850.0 | 1283.193 | 103/13 | | Full depth vertical stiffener web 3 | 3*8 | 0.490 | 1.290 | 0.010 | 7850.0 | 1190.877 | 103/14 | | Full depth vertical stiffener web 4 | 3*8 | 0.490 | 1.110 | 0.010 | 7850.0 | 1024.708 | 103/15 | | Full depth vertical stiffener web 5 | 3*8 | 0.490 | 0.890 | 0.010 | 7850.0 | 821.613 | 103/16 | | Full depth vertical stiffener pivot box 1 | 1*8 | 0.488 | 0.375 | 0.010 | 7850.0 | 114.924 | 103/17 | | Full depth vertical stiffener pivot box 2 | 1*8 | 0.488 | 0.095 | 0.010 | 7850.0 | 29.115 | 103/18 | |--|----------|--------------------|---------|-----------|-----------------------|----------|--------| | Full depth vertical stiffener pivot box 3 | 1*8 | 0.488 | 1.390 | 0.010 | 7850.0 | 425.985 | 103/19 | | Full depth vertical stiffener pivot box 4 | 1*8 | 0.488 | 1.290 | 0.010 | 7850.0 | 395.339 | 103/20 | | Full depth vertical stiffener pivot box 5 | 1*8 | 0.488 | 1.110 | 0.010 | 7850.0 | 340.176 | 103/21 | | Full depth vertical stiffener pivot box 6 | 1*8 | 0.488 | 0.890 | 0.010 | 7850.0 | 272.753 | 103/22 | | Full depth vertical stiffener pivot box 7 | 1*8 | 0.488 | 0.375 | 0.010 | 7850.0 | 114.924 | 103/23 | | Full depth vertical stiffener flange 1 | 3*8 | 0.210 | 1.220 | 0.010 | 7850.0 | 482.681 | 103/30 | | Full depth vertical stiffener flange 2 | 3*8 | 0.210 | 1.220 | 0.010 | 7850.0 | 482.681 | 103/31 | | Full depth vertical stiffener flange 3 | 3*8 | 0.210 | 0.940 | 0.010 | 7850.0 | 371.902 | 103/32 | | Full depth vertical stiffener flange 4 | 3*8 | 0.210 | 0.720 | 0.010 | 7850.0 | 284.861 | 103/33 | | Vertical stiffener 1 | theo*8En | gi <u>0.20</u> 011 | ng.396g | ani.94610 | 11 7 850.0 | 1745.840 | 103/25 | | Vertical stiffener 2 | 10*8 | 0.200 | 1.290 | 0.010 | 7850.0 | 1620.241 | 103/26 | | Vertical stiffener 3 | 10*8 | 0.200 | 1.110 | 0.010 | 7850.0 | 1394.160 | 103/27 | | Vertical stiffener 4 | 10*8 | 0.200 | 0.890 | 0.010 | 7850.0 | 1117.841 | 103/28 | | Vertical stiffener 5 | 10*8 | 0.200 | 0.375 | 0.010 | 7850.0 | 471.001 | 103/29 | | Stiffener plate at pintle and pivot | 6*8 | 0.390 | 0.488 | 0.010 | 7850.0 | 717.126 | 103/60 | | Guide roller pin 75D
150LG | 1*8 | 5.200 | | | | 41.600 | | | Roller bracket | 2*8 | 0.185 | 0.150 | 0.016 | 7850.0 | 55.767 | | | Roller mounting plate | 1*8 | 0.350 | 0.360 | 0.016 | 7850.0 | 126.605 | | | Roller mounting plate 2 | 1*8 | 0.350 | 0.360 | 0.016 | 7850.0 | 126.605 | | | Spring socket plate
OD 135 ID 17.5 15tk | 8*8 | 1.680 | | | | 107.520 | | | Lock plate | 2*8 | 0.040 | 0.090 | 0.008 | 7850.0 | 3.618 | | | | Plate | 1*8 | 0.350 | 0.360 | 0.016 | 7850.0 | 126.605 | | |---|--|--------------|---------------|-------------|--------------|--------------|----------------|---------| | | | | | | Tota | al Quantity | 57137.718 | kg | | | | | | To | otal Deducte | d Quantity | 0.000 kg | | | | | | | | Net Tota | al Quantity | 57137.718 | kg | | | | | S | ay 57137.71 | 18 kg @ Rs | 64.18 / kg | Rs 366 | 7098.74 | | 2 | 85.102
Supply of MS Tees, And
charges | gles, Joists | , ISMB, ISM | C confirmin | g to IS20620 | GrA/B includ | ding cost of c | onveyan | | | Horizontal girder ISMB
500 X 180 | 5*8 | 5.748 | | | 86.9 | 19980.049 | 103/8 | | | Walk way base
support ISMC 200 X
75 | 10*8 | 0.250 | A. | | 22.1 | 442.000 | 103/41 | | | Walk way platform base ISMC 150 X 75 | 2*8 | 5.500 | 3.7 | 7 | 16.4 | 1443.200 | 103/42 | | | Walk way platform
base cross support
ISMC 150 X 75 | 5*2 | 0.850 | | | 16.4 | 139.400 | 103/43 | | | Toe guard ISA 65 X
65 X 6 | 2*8 | 5.500 | a and | . , . | 5.8 | 510.400 | 103/4 | | |
Hand rail vertical post
base ISA 75 X 75 X 6 | 10*8 | 0.150 | ng Org | anisatio | 6.8 | 81.600 | 103/4 | | | Hand rail vertical post
ISA 50 X 50 X 6 | 10*8 | 1.250 | | | 4.5 | 450.000 | 103/4 | | | Flat on hand rail | 2*8 | 4.790 | 0.050 | 0.008 | 7850.0 | 240.650 | | | | | | | | Tota | al Quantity | 23287.299 | kg | | | | | | To | otal Deducte | ed Quantity | 0.000 kg | | | | | | | | Net Tota | al Quantity | 23287.299 | kg | | | | | S | ay 23287.29 | 99 kg @ Rs | 66.13 / kg | Rs 153 | 9989.08 | | 3 | 85.103
Supply of MS checquer | ed plates ir | ncluding cost | of conveya | ince charges | 5 | | | | | Chequered plate | 1*8 | 5.500 | 0.850 | | 64.9 | 2427.260 | 103/4 | | | | | | | Tota | al Quantity | 2427.260 | kg | | | | | | To | otal Deducte | ed Quantity | 0.000 kg | | | | | | | | Net Tota | al Quantity | 2427.260 | kg | | | | | ; | Say 2427.26 | 60 kg @ Rs | 73.33 / kg | Rs 177 | 990.98 | | 4 | od140041/2019_2020 | ما:م | | | | | | | | | | |---|--|-------------|----------------|------------------|----------------|------------------|-------------|----------------------------------|--|--|--| | | Supply of GI pipe 32mm | ı dia | 32 | mm dia GI p | nine | | | | | | | | | GI pipe 32mm dia | | | illii dia Gi p | лре | | | | | | | | | hand rail | 2*8 | 8.120 | | | | 129.920 | | | | | | | | | | | Tota | al Quantity | 129.920 m | etre | | | | | | | | | То | tal Deducte | d Quantity | 0.000 met | re | | | | | | | | | | Net Tota | al Quantity | | | | | | | | | | Say 129 | 9.920 metre | @ Rs 220.7 | 73 / metre | | | | | | | | Al Bronze bush and a materials, machineries, analysis for roller - 1 Spring loaded guide | labour, all | | | | • | • | | | | | | | roller assembly | 1*8 | 1776 | | 1-21 | | 8.000 | | | | | | | | | L/a | | Tota | al Quantity | 8.000 no | | | | | | | | d Quantity | 0.000 no | | | | | | | | | | | | .1 | 100 | = 110 | | al Quantity | ty 8.000 no | | | | | | | Other Engineer Say 8.000 no @ Rs 17423.34 / no Rs 139386.72 | | | | | | | | | | | | 6 | 85.110 Fabrication and supply of Structural steel wheel gate and accessories as per approved specificatio drawings and directions of deptl officer at site including cost of labour, machinery, all leads and li incidental and handling charges etc complete but excluding cost of material already supplied | | | | | | | | | | | | | Skin plate | 1*8 | 5.356 | Shutter
5.200 | 0.010 | 7850.0 | 17490.554 | 103/ | | | | | | Plate on horizontal | 5*8 | 0.160 | 5.646 | 0.010 | 7850.0 | 2836.551 | | | | | | | girder flange | | 0.100 | 5.040 | 0.010 | | | 103/1 | | | | | | | 1*8 | 2.315 | 5.200 | 0.016 | 7850.0 | 12095.783 | | | | | | | girder flange | | | | | | 12095.783 | 103/2 | | | | | | girder flange End box plate Pivot box stiffener | 1*8 | 2.315 | 5.200 | 0.016 | 7850.0 | | 103/3 | | | | | | girder flange End box plate Pivot box stiffener plate 1 Pivot box stiffener | 1*8
1*8 | 2.315
0.490 | 5.200
0.616 | 0.016
0.016 | 7850.0
7850.0 | 303.289 | 103/3
103/3
103/3
103/4 | | | | | Pivot box stiffener plate 3 | 1*8 | 0.490 | 1.284 | 0.016 | 7850.0 | 632.180 | 103/5 | |---|---------|------------------|------------------|-------------------|--------------|----------|--------| | Pivot box stiffener plate 3a | 2*8 | 0.236 | 1.284 | 0.016 | 7850.0 | 608.958 | 103/5a | | Pivot box stiffener plate 4 | 1*8 | 0.490 | 0.926 | 0.016 | 7850.0 | 455.918 | 103/6 | | Pivot box stiffener plate 4a | 2*8 | 0.236 | 0.926 | 0.016 | 7850.0 | 439.170 | 103/6a | | Pivot box stiffener plate 5 | 5*8 | 0.488 | 0.490 | 0.016 | 7850.0 | 1201.339 | 103/7 | | Vertical wood seal support web | 1*8 | 5.200 | 0.476 | 0.010 | 7850.0 | 1554.426 | 103/9 | | Vertical wood seal support flange 1 | 1*8 | 5.200 | 0.210 | 0.012 | 7850.0 | 822.932 | 103/10 | | Vertical wood seal support flange 2 | 1*8 | 5.200 | 0.500 | 0.012 | 7850.0 | 1959.361 | 103/11 | | Full depth vertical stiffener web 1 | 3*8 | 0.490 | 0.095 | 0.010 | 7850.0 | 87.701 | 103/12 | | Full depth vertical stiffener web 2 | 3*8 | 0.490 | 1.390 | 0.010 | 7850.0 | 1283.193 | 103/13 | | Full depth vertical stiffener web 3 | ther En | gineeri
0.490 | ng Orga
1.290 | anisatio
0.010 | ns
7850.0 | 1190.877 | 103/14 | | Full depth vertical stiffener web 4 | 3*8 | 0.490 | 1.110 | 0.010 | 7850.0 | 1024.708 | 103/15 | | Full depth vertical stiffener web 5 | 3*8 | 0.490 | 0.890 | 0.010 | 7850.0 | 821.613 | 103/16 | | Full depth vertical stiffener pivot box 1 | 1*8 | 0.488 | 0.375 | 0.010 | 7850.0 | 114.924 | 103/17 | | Full depth vertical stiffener pivot box 2 | 1*8 | 0.488 | 0.095 | 0.010 | 7850.0 | 29.115 | 103/18 | | Full depth vertical stiffener pivot box 3 | 1*8 | 0.488 | 1.390 | 0.010 | 7850.0 | 425.985 | 103/19 | | Full depth vertical stiffener pivot box 4 | 1*8 | 0.488 | 1.290 | 0.010 | 7850.0 | 395.339 | 103/20 | | Full depth vertical stiffener pivot box 5 | 1*8 | 0.488 | 1.110 | 0.010 | 7850.0 | 340.176 | 103/21 | | Full depth vertical stiffener pivot box 6 | 1*8 | 0.488 | 0.890 | 0.010 | 7850.0 | 272.753 | 103/22 | | | Full depth vertical stiffener pivot box 7 | 1*8 | 0.488 | 0.375 | 0.010 | 7850.0 | 114.924 | 103/23 | |---|--|-------------|-----------|----------|-----------|----------|-----------|--------| | | Full depth vertical
stiffener flange 1 | 3*8 | 0.210 | 1.220 | 0.010 | 7850.0 | 482.681 | 103/30 | | | Full depth vertical
stiffener flange 2 | 3*8 | 0.210 | 1.220 | 0.010 | 7850.0 | 482.681 | 103/31 | | | Full depth vertical stiffener flange 3 | 3*8 | 0.210 | 0.940 | 0.010 | 7850.0 | 371.902 | 103/32 | | | Full depth vertical
stiffener flange 4 | 3*8 | 0.210 | 0.720 | 0.010 | 7850.0 | 284.861 | 103/33 | | , | Vertical stiffener 1 | 10*8 | 0.200 | 1.390 | 0.010 | 7850.0 | 1745.840 | 103/25 | | , | Vertical stiffener 2 | 10*8 | 0.200 | 1.290 | 0.010 | 7850.0 | 1620.241 | 103/26 | | , | Vertical stiffener 3 | 10*8 | 0.200 | 1.110 | 0.010 | 7850.0 | 1394.160 | 103/27 | | , | Vertical stiffener 4 | 10*8 | 0.200 | 0.890 | 0.010 | 7850.0 | 1117.841 | 103/28 | | , | Vertical stiffener 5 | 10*8 | 0.200 | 0.375 | 0.010 | 7850.0 | 471.001 | 103/29 | | | Stiffener plate at pintle and pivot | 6*8 | 0.390 | 0.488 | 0.010 | 7850.0 | 717.126 | 103/60 | | | Guide roller pin 75D
150 LG | 1*8 | 5.200 | 51 O 12 | Star Star | | 41.600 | | | | Roller bracket | the tare En | gi0:1851i | ngo.150g | ano.01610 | 117850.0 | 55.767 | | | | Roller mounting plate | 1*8 | 0.350 | 0.360 | 0.016 | 7850.0 | 126.605 | | | | Roller mounting plate | 1*8 | 0.350 | 0.360 | 0.016 | 7850.0 | 126.605 | | | | Spring socket plate
OD 135 ID 17.5 15tk | 8*8 | 1.680 | | | | 107.520 | | | | Lock plate | 2*8 | 0.040 | 0.090 | 0.008 | 7850.0 | 3.618 | | | | Plate | 1*8 | 0.350 | 0.360 | 0.016 | 7850.0 | 126.605 | | | | Chequered plate | 1*8 | 5.500 | 0.850 | | 64.9 | 2427.260 | 103/45 | | | Horizontal girder ISMB
500 X 180 | 5*8 | 5.748 | | | 86.9 | 19980.049 | 103/8 | | | Walk way base
support ISMC 200 X
75 | 10*8 | 0.250 | | | 22.1 | 442.000 | 103/41 | | | Walk way platform
base ISMC 150 X 75 | 2*8 | 5.500 | | | 16.4 | 1443.200 | 103/42 | | | Walk way platform
base cross support
ISMC 150 X 75 | 5*2 | 0.850 | | | 16.4 | 139.400 | 103/43 | |-------|--|-------------------|--------------------------------------|-------------------------|-------------------------|----------------------------|-----------------------------|-------------------------| | | Toe guard ISA 65 X 65 X 6 | 2*8 | 5.500 | | | 5.8 | 510.400 | 103/44 | | | Hand rail vertical post base ISA 75 X 75 X 6 | 10*8 | 0.150 | | | 6.8 | 81.600 | 103/46 | | | Hand rail vertical post ISA 50 X 50 X 6 | 10*8 | 1.250 | | | 4.5 | 450.000 | 103/47 | | | Flat on hand rail | 2*8 | 4.790 | 0.050 | 0.008 | 7850.0 | 240.650 | 103/47 | | | | | | | Tota | al Quantity | 82852.277 | kg | | | | | 100 | To | tal Deducte | d Quantity | 0.000 kg | | | | | | | | Net Tota | al Quantity | 82852.277 | kg | | | | - | S | ay 82852.27 | 7 kg @ Rs (| 62.86 / kg | Rs 520 | 8094.13 | | | SS plate | ther En | SS p
9100011
5.957 | ad for roller
0.170 | anisatio
0.008 | 7850.0
Quantity | 508.776
508.776 k | 13/102
g | | | | | | To | otal Deducte | d Quantity | 0.000 kg | | | | | | | | Net Tota | al Quantity | 508.776 k | g | | | | | | Say 508.776 | | | | | | SI No | Description | No | L | В | D | CF | Quantity | 297.95 | | 1 | | 14 F8 - F8 | | | | | | Remark | | | 85.101
Supply of MS plates con | nfirming to I | | of top pivot | · | rance charg | es | | | | Supply of MS plates co | nfirming to I | | | · | rance charg
7850.0 | es
36.927 | | | | | | S 2062GrB | including co | st of convey | | | Remark | | | Supply of MS plates con Pintle stiffener plate Pintle foundation plate | 3*8 | S 2062GrB
0.140 | including co | st of convey | 7850.0 | 36.927 | Remark
104/6 | | | Supply of MS plates con Pintle stiffener plate Pintle foundation plate 1 Pintle foundation plate | 3*8
4*8 | S 2062GrB
0.140
0.150 | 0.140
0.150 | 0.010
0.012 | 7850.0
7850.0 | 36.927
67.824 | 104/6
104/8 | | | Supply of MS plates con Pintle stiffener plate Pintle foundation plate 1 Pintle foundation plate 2 | 3*8
4*8
8*8 | S 2062GrB
0.140
0.150
0.200 | 0.140
0.150
0.200 | 0.010
0.012
0.012 | 7850.0
7850.0
7850.0 | 36.927
67.824
241.153 | 104/6
104/8
104/4 | | | Pivot base plate stiffener | 4*8 | 0.265 | 0.295 | 0.010 | 7850.0 | 196.376 | 105/8 | |---|---|--------------------------------------
---------------|---|---|---|---|--------------------------| | | Pivot foundation plate | 12*8 | 0.080 | 0.080 | 0.012 | 7850.0 | 57.877 | 105/10 | | | Plate | 2*8 | 0.130 | 0.130 | 0.010 | 7850.0 | 21.227 | 105/12 | | | | | | | Tota | al Quantity | 2008.010 | kg | | | | | | То | tal Deducte | d Quantity | 0.000 kg | | | | | | | | Net Tota | al Quantity | 2008.010 | kg | | | | | ; | Say 2008.01 | 0 kg @ Rs | 64.18 / kg | Rs 128 | 8874.08 | | 2 | 85.107
Supply of MS round bar | including o | cost of conve | eyance char | ges | | | | | | 40 mm anchor rod | 8*8 | 1.000 | B. | | 9.85 | 630.400 | | | | 30 mm rod | 4*8 | 0.500 | | | 5.54 | 88.640 | | | | Pivot connecting rod
85 mm | 2*8 | 0.815 | 37 | | 44.52 | 580.541 | | | | Pivot anchor rod
40mm | 12*8 | 0.750 | | Th | 9.85 | 709.200 | | | | Pivot pin 95mm | 2*8 | 0.165 | | | 55.6 | 146.785 | | | | | | ne literati | IN DE PEZ | Tota | al Quantity | 2155.566 | kg | | | Ot | her Er | gineeri | ng Or g e | tal Deducte | d Quantity | 0.000 kg | | | | | 7 | | | Net Tota | al Quantity | 2155.566 | kg | | | | | | | | | Rs 138344 | | | | | | | Say 2155.56 | 66 kg @ Rs | 64.18 / kg | 57.877 21.227 2008.010 0.000 kg 2008.010 Rs 128 630.400 88.640 580.541 709.200 146.785 2155.566 0.000 kg 2155.566 Rs 138 ding cost of collections of depth of ndrails and a | 344.23 | | 3 | 85.102
Supply of MS Tees, Ang
charges | les, Joists | | | | | | | | 3 | Supply of MS Tees, Ang | les, Joists | | | | | ding cost of c | | | 3 | Supply of MS Tees, Ang charges | | , ISMB, ISM | | g to IS20620 | GrA/B includ | 172.368 | conveyar | | 3 | Supply of MS Tees, Ang charges | | , ISMB, ISM | C confirming | g to IS20620 | GrA/B included 22.8 al Quantity | 172.368 k | conveyar | | 3 | Supply of MS Tees, Ang charges | | , ISMB, ISM | C confirming | Total Deducte | GrA/B included 22.8 al Quantity | 172.368
172.368 k | conveyar | | 3 | Supply of MS Tees, Ang charges | | , ISMB, ISM | C confirming | Total Deducte | 22.8 al Quantity d Quantity al Quantity | 172.368
172.368 k
0.000 kg | conveyar | | 4 | Supply of MS Tees, Ang charges | 1*8 of Hoisting etc as per machiner | bridge unit | C confirming To Say 172.36 in structural recifications, and handling | Total Deducte Net Total 8 kg @ Rs steel confirm, drawings and g charges from | 22.8 22.8 22.8 24 Quantity 25 Quantity 26 Quantity 26 Quantity 26 Quantity 27 Quantity 28 Quantity 38 Quantity 39 Quantity 40 Quantity 40 Quantity 40 Quantity 41 Quantity 42 Quantity 43 Quantity 46 | 172.368 kg 172.368 kg 0.000 kg 172.368 kg Rs 11 | g
398.70
ding lade | | | Pintle foundation plate 1 | 4*8 | 0.150 | 0.150 | 0.012 | 7850.0 | 67.824 | 104/8 | |---|---|-----------|-----------------------------|----------------|-----------------------------|-------------|---------------|----------| | | Pintle foundation plate 2 | 8*8 | 0.200 | 0.200 | 0.012 | 7850.0 | 241.153 | 104/4 | | | Pivot connecting plate | 2*8 | 0.120 | 0.200 | 0.050 | 7850.0 | 150.721 | 105/2 | | | Pivot base plate 1 | 2*8 | 0.400 | 0.350 | 0.040 | 7850.0 | 703.360 | 105/7 | | | Pivot base plate 2 | 2*8 | 0.400 | 0.265 | 0.040 | 7850.0 | 532.545 | 105/6 | | | Pivot base plate stiffener | 4*8 | 0.265 | 0.295 | 0.010 | 7850.0 | 196.376 | 105/8 | | | Pivot foundation plate | 12*8 | 0.080 | 0.080 | 0.012 | 7850.0 | 57.877 | 105/10 | | | Plate | 2*8 | 0.130 | 0.130 | 0.010 | 7850.0 | 21.227 | 105/12 | | | 40mm anchor rod | 8*8 | 1.000 | 19 | | 9.85 | 630.400 | | | | 30 mm rod | 4*8 | 0.500 | | 7 | 5.54 | 88.640 | | | | Pivot connecting rod
85mm | 2*8 | 0.815 | 51/4 | | 44.52 | 580.541 | | | | Pivot anchor rod
40mm | 12*8 | 0.750 | | | 9.85 | 709.200 | | | | Pivot pin 95mm | 2*8 | 0.165 | in of the | D.C. | 55.6 | 146.785 | | | | ISA 150 X 150 X 10 | 1*8
 | 0.945
gineeri | ng Org | anicatio | 22.8 | 172.368 | | | | | | | Total Quantity | | | 4335.944 | kg | | | | | 2 | To | otal Deducte | d Quantity | 0.000 kg | | | | | | | | al Quantity | 4335.944 kg | | | | | | | ; | Say 4335.94 | l4 kg @ Rs | 58.93 / kg | Rs 255517.18 | | | 5 | od140296/2019_2020 Supply of cast steel, IS collar and aluminium br and conveyance charge | onze bush | , IS 305 Gr.
olete
Ra | AB2 etc for | shutters and
for one set | d embedde | d parts, cost | • | | | Cast steel pintle assembly including | 4*2 | | | | | 8.000 | | | | mountings on shutter | | | | | | | | | | | | | | Tota | al Quantity | 8.000 set | | | | | | | To | otal Deducte | d Quantity | 0.000 set | | | | | | | | | al Quantity | 8.000 set | | | | | | Say | 8.000 set @ | Rs 130806 | 63.48 / set | Rs 1046 | 64507.84 | | 6 | od140304/2019_2020 | | | | | | | | | | cost of labour and hire | | · · | | | | | | | | |-------|--|---------------------------|-------------------------------------|----------------------------------|--|--|---|-----------------------------------|--|--| | | Erection charge of pintle set | 2*4 | | | | | 8.000 | | | | | | | | | | Tota | al Quantity | 8.000 set | | | | | | | | | То | tal Deducte | d Quantity | 0.000 set | | | | | | | | | | Net Tota | al Quantity | 8.000 set | | | | | | | | ; | Say 8.000 se | et @ Rs 690 | 6.50 / set | Rs 55 | 252.00 | | | | SI No | Description | No | L | В | D | CF | Quantity | Remark | | | | | | 15 | F9 - Supply | of bolt and | nut | | | | | | | 1 | od140307/2019_2020
Supply of MS bolts and | nuts | San | A. | | | | | | | | | M16 X 90 mm length | 2*190 | C. S. I | | | 1.6 | 608.000 | | | | | | M16 X 40 mm length | 20*8 | J 3 | S. W | 1 13 | 0.3 | 48.000 | 103/5 | | | | | M16 X 50 mm length sill beam joint | 8*2 | THE PERSON NAMED IN | | TA | 0.4 | 6.400 | 102/5 | | | | | | Total Quantity | | | | | | | | | | | | | | То | tal Deducte | d Quantity | | | | | | | | ther Er | oinoori | na Oras | Net Tota | al Quantity | | g | | | | | Say 662.400 kg @ Rs 77.64 / kg | | | | | | Rs 51 | 428.74 | | | | SI No | Description | No | L | В | D | CF | Quantity | Remark | | | | | 16 F10 - | Providing | wooden se | al at side, b | ottom and | at joints | | | | | | | od140493/2019 2020 | | uality (Teak | • | | • | aling
Sic | le = 0.3r | | | | 1 | Providing wooden seal 0.1m x 5.5m bottom = 0 | | n x 5.59m, j | oint = 0.35n | 1 X 0.00111 X | 3.3111 | | | | | | 1 | _ | | n x 5.59m, j
5.200 | oint = 0.35 n 0.500 | 0.420 | 3.3111 | 8.736 | 103/3 | | | | 1 | 0.1m x 5.5m bottom = 0 |).2m x 0.1r | | | | 3.5111 | 8.736
1.635 | | | | | 1 | 0.1m x 5.5m bottom = 0 Wood seal at centre | 0.2m x 0.1r | 5.200 | 0.500 | 0.420 | 3.3111 | | 103/3
103/3
103/3 | | | | 1 | 0.1m x 5.5m bottom = 0 Wood seal at centre Wood seal at bottom | 0.2m x 0.1r
1*8
1*8 | 5.200
5.675 | 0.500 | 0.420
0.180
0.370 | al Quantity | 1.635 | 103/3 | | | | 1 | 0.1m x 5.5m bottom = 0 Wood seal at centre Wood seal at bottom | 0.2m x 0.1r
1*8
1*8 | 5.200
5.675 | 0.500
0.200
0.250 | 0.420
0.180
0.370 | al Quantity | 1.635
3.848 | 103/3
103/3
d m | | | | 1 | 0.1m x 5.5m bottom = 0 Wood seal at centre Wood seal at bottom | 0.2m x 0.1r
1*8
1*8 | 5.200
5.675 | 0.500
0.200
0.250 | 0.420
0.180
0.370
Tota | al Quantity | 1.635
3.848
14.219 cu | 103/3
103/3
d m
m | | | | 1 | 0.1m x 5.5m bottom = 0 Wood seal at centre Wood seal at bottom | 0.2m x 0.1r
1*8
1*8 | 5.200
5.675
5.200 | 0.500
0.200
0.250 |
0.420 0.180 0.370 Tota tal Deducte Net Tota | al Quantity d Quantity al Quantity | 1.635
3.848
14.219 cud
0.000 cud
14.219 cud | 103/3
103/3
d m
m | | | | 2 | 0.1m x 5.5m bottom = 0 Wood seal at centre Wood seal at bottom | 1*8 1*8 1*8 correct pos | 5.200
5.675
5.200
Say 14.2 | 0.500 0.200 0.250 To 19 cud m @ | 0.420 0.180 0.370 Total tall Deducted Net Total Rs 36222.4 | al Quantity d Quantity al Quantity 2 / cud m | 1.635
3.848
14.219 cud
0.000 cud
14.219 cud
Rs 515 | 103/3
103/3
d m
m
d m | | | | | rubber 200 x 19 | 1*8 | 5.700 | | | | 45.600 | | |-------|--|--|--|--|--|--|--|------------------------------| | | rubber 175 x 19 | 1*8 | 5.200 | | | | 41.600 | | | | | | | | Tota | al Quantity | 128.800 m | netre | | | | | | To | otal Deducte | d Quantity | 0.000 met | re | | | | | | | Net Tota | al Quantity | 128.800 m | netre | | | | | Say 128 | .800 metre | @ Rs 1512.8 | 32 / metre | Rs 194 | 1851.22 | | SI No | Description | No | L | В | D | CF | Quantity | Rema | | | 17 F | 11 - Paintir | ng of the sh | utters and | embedded | parts | | | | | paint confirming to IS1 coats of priming coat a thickness of 70+/-5 mid is not less than 350mid including cost of all micharges, hire of T&P | applied with
rons, so th
crons over
naterials, la | zinc prime
at the total f
the grit blas
abour charg | r containing
film thicknes
sted and cle
ges, cost c | not less these of all coate
aned surfactors
of testing all | an 85% of an 85% of an 85% of an ending painting m | zinc dry film
oriming coat
A standard d
naterials, al | with a
at any
of IS 14 | | | ISA 150 x 150 x 10 | 1*8 | 0.945 | ie direction | or departin | 0.6 | 4.536 | | | | Pintle stiffener plate | 3*8 | 0.140 | 0.140 | | 2.0 | 0.941 | 104/ | | | Pintle foundation plate | 4*8 | 0.150 | 0.150 | | 2.0 | 1.440 | 104/ | | | Pintle foundation plate 2 | ther En | 0.200 | ng Org
0.200 | amisatiro | ns
2.0 | 5.121 | 104/ | | | Pivot connecting plate | 2*8 | 0.120 | 0.200 | | 2.0 | 0.768 | 105/ | | | Pivot pin collar | 2*8 | 0.160 | 0.280 | | 2.0 | 1.434 | 105/ | | | Pivot base plate 1 | 2*8 | 0.400 | 0.350 | | 2.0 | 4.480 | 105/ | | | Pivot base plate 2 | 2*8 | 0.400 | 0.265 | | 2.0 | 3.393 | 105/ | | | Pivot base plate stiffener | 4*8 | 0.265 | 0.295 | | 2.0 | 5.004 | 105/ | | | Pivot foundation plate | 12*8 | 0.080 | 0.080 | | 2.0 | 1.229 | 105/1 | | | Plate | 2*8 | 0.130 | 0.130 | | 2.0 | 0.541 | 105/1 | | | Chequered plate | 1*8 | 5.500 | 0.850 | | 2.0 | 74.800 | 103/4 | | | Horizontal girder ISMB 500 X 180 | 5*8 | 5.748 | | | 1.72 | 395.463 | 103/ | | | Walk way base
support ISMC 200 X
75 | 10*8 | 0.250 | | | 0.7 | 14.000 | 103/4 | | Walk way platform base ISMC 150 X 75 | 2*8 | 5.500 | | | 0.6 | 52.800 | 103/42 | |--|---------|-------|---------|----------|-----------|---------|--------| | Walk way platform
base cross support
ISMC 150 X 75 | | 0.850 | | | 0.6 | 5.100 | 103/43 | | Toe guard ISA 65 X
65 X 6 | 2*8 | 5.500 | | | 0.26 | 22.881 | 103/44 | | Hand rail vertical post
base ISA 75 X 75 X 6 | 10*8 | 0.150 | | | 0.3 | 3.600 | 103/46 | | Hand rail vertical post
ISA 50 X 50 X 6 | 10*8 | 1.250 | | | 0.26 | 26.000 | 103/47 | | | | B | Shutter | | | 1 | | | Skin plate | 1*8 | 5.356 | 5.200 | | 2.0 | 445.620 | 103/1 | | Plate on horizontal girder flange | 5*8 | 0.160 | 5.646 | TO | 2.0 | 72.269 | 103/1a | | End box plate | 1*8 | 2.315 | 5.200 | 1-21 | 2.0 | 192.608 | 103/2 | | Pivot box stiffener plate 1 | 1*8 | 0.490 | 0.616 | | 2.0 | 4.830 | 103/3 | | Pivot box stiffener plate 1a | 2*8 | 0.236 | 0.616 | . , . | 2.0 | 4.653 | 103/3a | | Pivot box stiffener plate 2 | ther En | 0.490 | ng Org | anisatio | ns
2.0 | 8.656 | 103/4 | | Pivot box stiffener plate 2a | 2*8 | 0.236 | 1.104 | | 2.0 | 8.338 | 103/4a | | Pivot box stiffener plate 3 | 1*8 | 0.490 | 1.284 | | 2.0 | 10.067 | 103/5 | | Pivot box stiffener plate 3a | 2*8 | 0.236 | 1.284 | | 2.0 | 9.697 | 103/5a | | Pivot box stiffener plate 4 | 1*8 | 0.490 | 0.926 | | 2.0 | 7.260 | 103/6 | | Pivot box stiffener plate 4a | 2*8 | 0.236 | 0.926 | | 2.0 | 6.994 | 103/6a | | Pivot box stiffener plate 5 | 5*8 | 0.488 | 0.490 | | 2.0 | 19.130 | 103/7 | | Vertical wood seal support web | 1*8 | 5.200 | 0.476 | | 2.0 | 39.604 | 103/9 | | Vertical wood seal support flange 1 | 1*8 | 5.200 | 0.210 | | 2.0 | 17.472 | 103/10 | | + | 1 | | | | 1 | | | |---|-------|------------------|------------------|----------|-----------|--------|--------| | Vertical wood seal support flange 2 | 1*8 | 5.200 | 0.500 | | 2.0 | 41.600 | 103/11 | | Full depth vertical stiffener web 1 | 3*8 | 0.490 | 0.095 | | 2.0 | 2.235 | 103/12 | | Full depth vertical stiffener web 2 | 3*8 | 0.490 | 1.390 | | 2.0 | 32.693 | 103/13 | | Full depth vertical stiffener web 3 | 3*8 | 0.490 | 1.290 | | 2.0 | 30.341 | 103/14 | | Full depth vertical stiffener web 4 | 3*8 | 0.490 | 1.110 | | 2.0 | 26.108 | 103/15 | | Full depth vertical stiffener web 5 | 3*8 | 0.490 | 0.890 | | 2.0 | 20.933 | 103/16 | | Full depth vertical stiffener pivot box 1 | 1*8 | 0.488 | 0.375 | - | 2.0 | 2.928 | 103/17 | | Full depth vertical stiffener pivot box 2 | 1*X | 0.488 | 0.095 | | 2.0 | 0.742 | 103/18 | | Full depth vertical stiffener pivot box 3 | 1*8 | 0.488 | 1.390 | | 2.0 | 10.854 | 103/19 | | Full depth vertical stiffener pivot box 4 | 1*8 | 0.488 | 1.290 | Sign | 2.0 | 10.073 | 103/20 | | Full depth vertical stiffener pivot box 5 | I 1*8 | gineeri
0.488 | ng Orga
1.110 | anisatio | ns
2.0 | 8.667 | 103/21 | | Full depth vertical stiffener pivot box 6 | 1*8 | 0.488 | 0.890 | | 2.0 | 6.950 | 103/22 | | Full depth vertical stiffener pivot box 7 | l 1*X | 0.488 | 0.375 | | 2.0 | 2.928 | 103/23 | | Full depth vertical stiffener flange 1 | 3*8 | 0.210 | 1.220 | | 2.0 | 12.298 | 103/30 | | Full depth vertical stiffener flange 2 | 3*8 | 0.210 | 1.220 | | 2.0 | 12.298 | 103/31 | | Full depth vertical stiffener flange 3 | 3*8 | 0.210 | 0.940 | | 2.0 | 9.476 | 103/32 | | Full depth vertical stiffener flange 4 | 3*8 | 0.210 | 0.720 | | 2.0 | 7.258 | 103/33 | | Vertical stiffener 1 | 10*8 | 0.200 | 1.390 | | 2.0 | 44.480 | 103/25 | | Vertical stiffener 2 | 10*8 | 0.200 | 1.290 | | 2.0 | 41.280 | 103/26 | | Vertical stiffener 3 | 10*8 | 0.200 | 1.110 | | 2.0 | 35.520 | 103/27 | | Vertical stiffener 4 | 10*8 | 0.200 | 0.890 | | 2.0 | 28.481 | 103/28 | | | | | | | | 1 | | |--|-------------------|-------------------|-------------|----------|--------|--------|--------| | Vertical stiffener 5 | 10*8 | 0.200 | 0.375 | | 2.0 | 12.001 | 103/29 | | Pintle base | 1*8 | 1.100 | | | 2.0 | 17.600 | 103/53 | | Pivot base | 1*8 | 0.850 | | | 2.0 | 13.600 | 103/52 | | Flat on hand rail | 2*8 | 0.050 | 4.790 | | 2.0 | 7.665 | 103/48 | | Stiffener plate at pintle and pivot | 6*8 | 0.390 | 0.488 | | 2.0 | 18.271 | 103/60 | | Roller bracket | 2*8 | 0.185 | 0.150 | | 2.0 | 0.888 | | | Roller mounting plate | 1*8 | 0.350 | 0.360 | | 2.0 | 2.016 | | | Roller mounting plate 2 | 1*8 | 0.350 | 0.360 | | 2.0 | 2.016 | | | Lock plate | 2*8 | 0.040 | 0.090 | | 2.0 | 0.116 | | | Plate | 1*8 | 0.350 | 0.360 | | 2.0 | 2.016 | | | | 6,0 | W. F. | MS sections | S | | | | | Liner ISA 150 X 150 X
10 | 22*2 | 1.020 | | I B | 0.6 | 26.928 | 102/9 | | Liner ISA 150 X 150 X
10 | 44*2 | 0.225 | | | 0.6 | 11.880 | 102/8 | | Liner ISA 150 X 150 X | th 4 4*2Er | gi 1210 ri | ng Org | anisatio | ns 0.6 | 63.888 | 102/7 | | Liner ISMB 1/2 CUT
400 X 140 | 4*2 | 5.660 | | 0.500 | 1.36 | 30.791 | 102/10 | | SILL BEAM ISA 75 X
75 X 8 | 48*2 | 0.2218 | | | 0.3 | 6.388 | 102/2 | | SILL BEAM - ISMC
250 X 80 | 4*2 | 5.820 | | | 0.82 | 38.180 | 102/1 | | Guide roller track 1/2
ISMB 450 X 150 | 4*2 | 5.950 | | 0.500 | 1.5 | 35.700 | 102/14 | | | | Er | mbedded pa | rts | | | | | Liner 16mm 325LG rod | 220*2 | 0.325 | | | 0.05 | 7.150 | 102/12 | | Sill beam 16mm
325LG rod | 144*2 | 0.325 | | | 0.05 | 4.681 | 102/3 | | Guide roller track
16mm 325LG rod | 96*2 | 0.325 | | | 0.05 | 3.121 | 102/15 | | | Anchor rod hoist unit embedded parts 30 mm | 8*8 | 0.750 | | | 0.05 | 2.401 | 107/17 | |-------|--|-------------|-------------------|-------------------|---------------|---------------|---------------|-------------| | | | | 8nos Prir | nary Embed | ded Parts | | | | | | Liner connecting plate | 132*2 | 0.065 | 0.065 | | 2.0 | 2.231 | 102/11 | | | Liner - plate | 2*2 | 6.200 | 3.730 | | 2.0 | 185.008 | 102/6 | | | Plate at sill beam joint | 4*2 | 0.100 | 0.2218 | | 2.0 | 0.355 | 102/4 | | | | | | | Tota | al Quantity | 2353.763 | sqm | | | | | | To | otal Deducte | d Quantity | 0.000 sqm | 1 | | | | | | | Net Tota | al Quantity | 2353.763 | sqm | | | | | Say 2 | 2353.763 sq | m @ Rs 809 |).89 / sqm | Rs 190 | 6289.12 | | SI No | Description | No | -4/1 | В | D | CF | Quantity | Remark | | | | 18 F12 - Eı | rection of s | hutter in gr | oove safely | 1 | | | | 1 | 85.111 Erection of the gates s labour all incidental and | l conveyan | ce charges | etc complete | e as per dire | ection of dep | partmental of | ficer at si | | | Skin plate | 1*8 | 5.356 | 5.200 | 0.010 | 7850.0 | 17490.554 | 103/1 | | | Plate on horizontal girder flange | 5*8 | 0.160 | 5.646 | 0.010 | 7850.0 | 2836.551 | 103/1a | | | End box plate
| ther En | 191neer1
2.315 | ng () rg
5.200 | 0.016 | ns
7850.0 | 12095.783 | 103/2 | | | Pivot box stiffener plate 1 | 1*8 | 0.490 | 0.616 | 0.016 | 7850.0 | 303.289 | 103/3 | | | Pivot box stiffener plate 1a | 2*8 | 0.236 | 0.616 | 0.016 | 7850.0 | 292.148 | 103/3a | | | Pivot box stiffener plate 2 | 1*8 | 0.490 | 1.104 | 0.016 | 7850.0 | 543.557 | 103/4 | | | Pivot box stiffener plate 2a | 2*8 | 0.236 | 1.104 | 0.016 | 7850.0 | 523.590 | 103/4a | | | Pivot box stiffener plate 3 | 1*8 | 0.490 | 1.284 | 0.016 | 7850.0 | 632.180 | 103/5 | | | Pivot box stiffener plate 3a | 2*8 | 0.236 | 1.284 | 0.016 | 7850.0 | 608.958 | 103/5a | | | Pivot box stiffener plate 4 | 1*8 | 0.490 | 0.926 | 0.016 | 7850.0 | 455.918 | 103/6 | | | Pivot box stiffener plate 4a | 2*8 | 0.236 | 0.926 | 0.016 | 7850.0 | 439.170 | 103/6a | |
 | | | 1 | | | | | |---|---------|------------------|------------------|-------------------|--------------|----------|--------| | Pivot box stiffener plate 5 | 5*8 | 0.488 | 0.490 | 0.016 | 7850.0 | 1201.339 | 103/7 | | Vertical wood seal support web | 1*8 | 5.200 | 0.476 | 0.010 | 7850.0 | 1554.426 | 103/9 | | Vertical wood seal support flange 1 | 1*8 | 5.200 | 0.210 | 0.012 | 7850.0 | 822.932 | 103/10 | | Vertical wood seal support flange 2 | 1*8 | 5.200 | 0.500 | 0.012 | 7850.0 | 1959.361 | 103/11 | | Full depth vertical stiffener web 1 | 3*8 | 0.490 | 0.095 | 0.01 | 7850.0 | 87.701 | 103/12 | | Full depth vertical stiffener web 2 | 3*8 | 0.490 | 1.390 | 0.010 | 7850.0 | 1283.193 | 103/13 | | Full depth vertical stiffener web 3 | 3*8 | 0.490 | 1.290 | 0.010 | 7850.0 | 1190.877 | 103/14 | | Full depth vertical stiffener web 4 | 3*8 | 0.490 | 1.110 | 0.010 | 7850.0 | 1024.708 | 103/15 | | Full depth vertical stiffener web 5 | 3*8 | 0.490 | 0.890 | 0.010 | 7850.0 | 821.613 | 103/16 | | Full depth vertical stiffener pivot box 1 | 1*8 | 0.488 | 0.375 | 0.010 | 7850.0 | 114.924 | 103/17 | | Full depth vertical stiffener pivot box 2 | ther En | gineeri
0.488 | ng Orga
0.095 | anisatio
0.010 | ns
7850.0 | 29.115 | 103/18 | | Full depth vertical stiffener pivot box 3 | 1*8 | 0.488 | 1.390 | 0.010 | 7850.0 | 425.985 | 103/19 | | Full depth vertical stiffener pivot box 4 | 1*8 | 0.488 | 1.290 | 0.010 | 7850.0 | 395.339 | 103/20 | | Full depth vertical stiffener pivot box 5 | 1*8 | 0.488 | 1.110 | 0.010 | 7850.0 | 340.176 | 103/21 | | Full depth vertical stiffener pivot box 6 | 1*8 | 0.488 | 0.890 | 0.010 | 7850.0 | 272.753 | 103/22 | | Full depth vertical stiffener pivot box 7 | 1*8 | 0.488 | 0.375 | 0.010 | 7850.0 | 114.924 | 103/23 | | Full depth vertical stiffener flange 1 | 3*8 | 0.210 | 1.220 | 0.010 | 7850.0 | 482.681 | 103/30 | | Full depth vertical stiffener flange 2 | 3*8 | 0.210 | 1.220 | 0.010 | 7850.0 | 482.681 | 103/31 | | Full depth vertical stiffener flange 3 | 3*8 | 0.210 | 0.940 | 0.010 | 7850.0 | 371.902 | 103/32 | | Full depth vertical stiffener flange 4 | 3*8 | 0.210 | 0.720 | 0.010 | 7850.0 | 284.861 | 103/33 | |--|----------------------|-----------------------|----------|-------------------|----------------------|-----------|--------| | Vertical stiffener 1 | 10*8 | 0.200 | 1.390 | 0.010 | 7850.0 | 1745.840 | 103/25 | | Vertical stiffener 2 | 10*8 | 0.200 | 1.290 | 0.010 | 7850.0 | 1620.241 | 103/26 | | Vertical stiffener 3 | 10*8 | 0.200 | 1.110 | 0.010 | 7850.0 | 1394.160 | 103/27 | | Vertical stiffener 4 | 10*8 | 0.200 | 0.890 | 0.010 | 7850.0 | 1117.841 | 103/28 | | Vertical stiffener 5 | 10*8 | 0.200 | 0.375 | 0.010 | 7850.0 | 471.001 | 103/29 | | Stiffener plate at pintle and pivot | 6*8 | 0.390 | 0.488 | 0.010 | 7850.0 | 717.126 | 103/60 | | Guide roller pin 75D
150LG | 1*8 | 5.200 | 0 | | | 41.600 | | | Roller bracket | 2*8 | 0.185 | 0.150 | 0.016 | 7850.0 | 55.767 | | | Roller mounting plate | 1*8 | 0.350 | 0.360 | 0.016 | 7850.0 | 126.605 | | | Roller mounting plate 2 | 1*8 | 0.350 | 0.360 | 0.016 | 7850.0 | 126.605 | | | Spring socket plate
OD 135 ID 17.5 15 tk | 8*8 | 1.680 | | | | 107.520 | | | Lock plate | 2*8 | 0.040 | 0.090 | 0.008 | 7850.0 | 3.618 | | | Plate | ther ₈ En | g10.350 ¹¹ | ng () rg | anisatio
0.016 | ¹¹ 5850.0 | 126.605 | | | Horizontal girder ISMB 500 X 180 | 5*8 | 5.748 | | F | 86.9 | 19980.049 | 103/8 | | Walk way base
support ISMC 200 X
75 | 10*8 | 0.250 | | | 22.1 | 442.000 | 103/41 | | Walk way platform base ISMC 150 X 75 | 2*8 | 5.500 | | | 16.4 | 1443.200 | 103/42 | | Walk way platform
base cross support
ISMC 150 X 75 | 5*2 | 0.850 | | | 16.4 | 139.400 | 103/43 | | Toe guard ISA 65 X 65 X 6 | 2*8 | 5.500 | | | 5.8 | 510.400 | 103/44 | | Hand rail vertical post
base ISA 75 X 75 X 6 | 10*8 | 0.150 | | | 6.8 | 81.600 | 103.46 | | Hand rail vertical post
ISA 50 X 50 X 6 | 10*8 | 1.250 | | | 4.5 | 450.000 | 103/47 | | Flat on hand rail | 2*8 | 4.790 | 0.050 | 0.008 | 7850.0 | 240.650 | | | | Chequered plate | 1*8 | 5.500 | 0.850 | | 64.9 | 2427.260 | 103/45 | | | | | |-------|--|----------------------|---------------|--------------|--------------|---------------------|--------------|--------|--|--|--|--| | | 32 mm dia GI pipe | | | | | | | | | | | | | | GI pipe 32mm dia
hand rail | 2*8 | 8.120 | | | 3.09 | 401.453 | | | | | | | | Pintle stiffener plate | 3*8 | 0.140 | 0.140 | 0.010 | 7850.0 | 36.927 | 104/6 | | | | | | | Pintle foundation plate | 4*8 | 0.150 | 0.150 | 0.012 | 7850.0 | 67.824 | 104/8 | | | | | | | Pintle foundation plate 2 | 8*8 | 0.200 | 0.200 | 0.012 | 7850.0 | 241.153 | 104/4 | | | | | | | Pivot connecting plate | 2*8 | 0.120 | 0.200 | 0.050 | 7850.0 | 150.721 | 105/2 | | | | | | | Pivot base plate 1 | 2*8 | 0.400 | 0.350 | 0.040 | 7850.0 | 703.360 | 105/7 | | | | | | | Pivot base plate 2 | 2*8 | 0.400 | 0.265 | 0.040 | 7850.0 | 532.545 | 105/6 | | | | | | | Pivot base plate stiffener | 4*8 | 0.265 | 0.295 | 0.010 | 7850.0 | 196.376 | 105/8 | | | | | | | Pivot foundation plate | 12*8 | 0.080 | 0.080 | 0.012 | 7850.0 | 57.877 | 105/10 | | | | | | | Plate | 2*8 | 0.130 | 0.130 | 0.010 | 7850.0 | 21.227 | 105/12 | | | | | | | 40mm anchor rod | 8*8 | 1.000 | 300) jy | | 9.85 | 630.400 | | | | | | | | 30mm rod | 4*8 | 0.500 | in of Park | | 5.54 | 88.640 | | | | | | | | Pivot connecting rod
85mm | ther ₈ En | ginaeri | ng Orga | anisatio | nS _{44.52} | 580.541 | | | | | | | | Pivot anchor rod
40mm | 12*8 | 0.750 | | <u>}</u> | 9.85 | 709.200 | | | | | | | | Pivot pin 95mm | 2*8 | 0.165 | | | 55.6 | 146.785 | | | | | | | | ISA 150 X 150 X 10 | 1*8 | 0.945 | | | 22.8 | 172.368 | | | | | | | | | | | | Tota | al Quantity | 87589.674 kg | | | | | | | | | | | To | tal Deducte | d Quantity | 0.000 kg | | | | | | | | | 87589.674 kg | | | | | | | | | | | | | | Rs 533 | 421.11 | | | | | | | | | | | SI No | Description | No | L | В | D | CF | Quantity | Remark | | | | | | | 19 F13 - Supp | ly of mater | ials, fabrica | ation and e | rection of h | oist assem | bly | | | | | | | 1 | od140850/2019_2020
Supplying and stacking | of 6Tonne | capacity rac | k and pinior | hoisting ur | it assembly | 1 | | | | | | | | | 1*8 | | | | | 8.000 | | | | | | | | | | | | Tota | al Quantity | 8.000 set | | | | | | | | | 0.000 set | | | | | | | | | | | | | Net Total Quantity 8.000 set | | | | | | | | | | | |---|--|----------------|---------|-------|-------|--------|----------|--|--|--|--| | | | Rs 7032981.60 | | | | | | | | | | | 2 | 85.101 Supply of MS plates confirming to IS 2062GrB including cost of conveyance charges | | | | | | | | | | | | | | MS plates | | | | | | | | | | | | Pinion2 shaft support case | 1*8 | 162.000 | | | | 1296.000 | | | | | | | Wheel shaft support case | 1*8 | 124.000 | | | | 992.000 | | | | | | | Motor mount vertical plate | 1*8 | 0.550 | 0.650 | 0.050 | 7850.0 | 1122.551 | | | | | | | Motor mount base plate | 1*8 | 0.550 | 1.300 | 0.050 | 7850.0 | 2245.101 | | | | | | | Motor mount stiffener plate | 1*8 | 0.575 | 1.295 | 0.050 | 7850.0 | 2338.123 | | | | | | | Anchor plate | 8*8 | 0.150 | 0.150 | 0.016 | 7850.0 | 180.864 | | | | | | | Wheel mounting base plate | 1*8 | 0.400 | 0.400 | 0.025 | 7850.0 | 251.201 | | | | | | | Wheel mounting vertical plate | 1*8
ther Er | 0.400 | 0.970 | 0.025 | 7850.0 | 609.160 | | | | | | | Wheel mounting vertical stiffener plate | 1*8 | 0.345 | 0.965 | 0.025 | 7850.0 | 522.693 | | | | | | | Wheel mounting vertical stiffener plate | 1*8 | 0.345 | 0.965 | 0.025 | 7850.0 | 522.693 | | | | | | | Wheel mounting top plate | 1*8 | 0.400 | 0.700 | 0.025 | 7850.0 | 439.600 | | | | | | | Wheel mounting top stiffener plate | 1*8 | 0.190 | 0.695 | 0.025 | 7850.0 | 207.319 | | | | | | | Hinge pin | 1*8 | 7.100 | | | | 56.800 | | | | | | | Spacer OD 150 ID
100 tk10 | 2*8 | 0.150 | 0.150 | 0.010 | 7850.0 | 28.260 | | | | | | | Hinge base | 1*8 | 0.300 | 0.580 | 0.020 | 7850.0 | 218.544 | | | | | | | Hinge plate | 2*8 | 0.190 | 0.300 | 0.020 | 7850.0 | 143.184 | | | | | | | Hinge base plate stiffener | 2*8 | 0.095 | 0.100 | 0.012 | 7850.0 | 14.319 | | | | | | _ | Hinge base plate stiffener 2 | 2*8 | 0.100 | 0.385 | 0.012 | 7850.0 | 58.028 | | | | | | | Hinge base plate stiffener 3 | 2*8 | 0.250 | 0.430 | 0.012 | 7850.0 | 162.024 | | | | | |---|--|-----|---------|-------------
------------|-------------|-----------|--------|--|--|--| | | Total Quantity 11408.464 | | | | | | | | | | | | | Total Deducted Quantity 0.000 kg | | | | | | | | | | | | | | | | | Net Tota | al Quantity | 11408.464 | kg | | | | | | | | Sa | ay 11408.46 | 64 kg @ Rs | 64.18 / kg | Rs 732 | 195.22 | | | | | 3 | od140897/2019_2020 Fabrication, supply and erection of Hoisting supporting structure and hoisting unit in structural st confirming to IS2062Gr etc as per approved specifications, drawings and directions of deptl officer at including cost of labour, machinery, allied works etc complete but excluding material alread supplied
supplied
supplied
drawings and directions of deptl officer at supplied
supplied
drawings and directions of deptl officer at supplied
supplied
drawings and directions of deptl officer at supplied
supplied
 | | | | | | | | | | | | | | | 166 | MS plate | I | | | | | | | | | Pinion 2 shaft support case | 1*8 | 162.000 | | 1 | | 1296.000 | | | | | | | Wheel shaft support case | 1*8 | 124.000 | DA | 4 | | 992.000 | | | | | | | Motor mount vertical plate | 1*8 | 0.550 | 0.650 | 0.050 | 7850.0 | 1122.551 | | | | | | | Motor mount base plate | 1*8 | 0.550 | 1.300 | 0.050 | 7850.0 | 2245.101 | | | | | | | Motor mount stiffener plate | 1*8 | 0.575 | 1.295 | 0.050 | 7850.0 | 2338.123 | | | | | | | Anchor plate | 8*8 | 0.150 | 0.150 | 0.016 | 7850.0 | 180.864 | | | | | | | Wheel mounting base plate | 1*8 | 0.400 | 0.400 | 0.025 | 7850.0 | 251.201 | | | | | | | Wheel mounting vertical plate | 1*8 | 0.400 | 0.970 | 0.025 | 7850.0 | 609.160 | | | | | | | Wheel mounting vertical stiffener plate | 1*8 | 0.345 | 0.965 | 0.025 | 7850.0 | 522.693 | | | | | | | Wheel mounting vertical stiffener plate | 1*8 | 0.345 | 0.965 | 0.025 | 7850.0 | 522.693 | | | | | | | Wheel mounting top plate | 1*8 | 0.400 | 0.700 | 0.025 | 7850.0 | 439.600 | | | | | | | Wheel mounting top stiffener plate | 1*8 | 0.190 | 0.695 | 0.025 | 7850.0 | 207.319 | | | | | | | Hinge pin | 1*8 | 7.100 | | | | 56.800 | | | | | | | Spacer OD 150 ID
100 tk 10 | 2*8 | 0.150 | 0.150 | 0.010 | 7850.0 | 28.260 | | | | | | | Hinge base | 1*8 | 0.300 | 0.580 | 0.020 | 7850.0 | 218.544 | | |-------|------------------------------|--------------|---------------|----------------|--------------|---------------------------|--------------|-----------| | | Hinge plate | 2*8 | 0.190 | 0.300 | 0.020 | 7850.0 | 143.184 | | | | Hinge base plate stiffener | 2*8 | 0.095 | 0.100 | 0.012 | 7850.0 | 14.319 | | | | Hinge base plate stiffener 2 | 2*8 | 0.100 | 0.385 | 0.012 | 7850.0 | 58.028 | | | | Hinge base plate stiffener 3 | 2*8 | 0.250 | 0.430 | 0.012 | 7850.0 | 162.024 | | | | | 11408.464 kg | | | | | | | | | | 0.000 kg | | | | | | | | | | al Quantity | 11408.464 kg | | | | | | | | | Rs 641269.76 | | | | | | | | SI No | Description | No | C.0 1 | В | D | CF | Quantity | Remark | | | | | 20 Shifting o | of Utilities L | .S | | | | | | Lu | mp-Sum To | otal | 70 M | 1-21 | F | Rs 200000.0 | 0 | | | | | Pr | ovision for G | SST paymen | ts (in %) @ 12.0 % | | | | | | | Amount rese | rved for GS | T payments | | 68462642.9 | 7 | | | | | 638984667.97 | | | | | | | | \cap | ther Er | ngineeri | Lumpsum f | or round off | ns | 15332.03 | | | | 1 | | | | | | TAL Rs 639 | 9000000.0 | | | | | K | | | | Total Rs 63 | | | | | | | | Punas 6 | | | | | | | | | | Rupees | Sixty Tillee | Crore Ninety | Lakii Oni | (Cost Index Applied for this estimate is 31.06%)