TS Register No: 1805/2020-2021 AS Register No:1884/2020-2021 ## KUMARAKOM - CHEEPUNKAL DESTINATION DEVELOPMENT PROJECT AT AYMANAM PANCHAYATH, KOTTAYAM DISTRICT ## **Detailed Estimate** (Dsor year: 2016,Cost Index Applied for this estimate is 37.93%) | | Description | No | L | В | D | CF | Quantity | Remark | |---|--|---|---|-------------|---|---------------|---|----------| | | | 1 A | ppendix A:H | louse-boat | jetty | | | | | 1 | 5.9.3
Centering and shutte
landings, balconies a | J | • | etc. and | removal of f | orm for:Su | spended flo | ors, roc | | | Slab | 1 | 150.000 | 3.600 | | | 540.000 | | | | | 2 | 150.000 | MAS - | 0.150 | | 45.000 | | | | | 2 | 3.600 | 8 | 0.150 | | 1.080 | | | | | 4 | 3.600 | 57/1 | 0.600 | | 8.640 | | | | | 15 | 11314 | COLT ! | Tota | I Quantity | 594.720 so | mp | | | | 104 | Ka | To | otal Deducted | d Quantity | 0.000 sqm | | | | | 300 | | | Net Tota | I Quantity | 594.720 so | mp | | | | | Say | 594.720 sq | m @ Rs 582 | .48 / sqm | Rs 346 | 412.51 | | 2 | Centering and shutter | ing includin | g strutting, e | | anisatio | | , beams, pli | nth bear | | | Centering and shutter girders bressumers ar | ing includin
nd cantileve | g strutting, e | | noval of form | | | nth bear | | 2 | Centering and shutter | ing includin
nd cantileve
2*51 | g strutting, e | | 0.250 | | 84.150 | nth bear | | | Centering and shutter girders bressumers ar | ing includin
nd cantileve
2*51
1*51 | g strutting, e
rs
3.300
3.300 | | 0.250
0.300 | | 84.150
50.490 | nth bear | | 2 | Centering and shutter girders bressumers ar | ing includin
nd cantileve
2*51 | g strutting, e
rs
3.300
3.300
3.300 | | 0.250
0.300
0.250 | | 84.150
50.490
165.000 | nth bea | | 2 | Centering and shutter girders bressumers ar | ing includin
nd cantileve
2*51
1*51
2*100 | g strutting, e
rs
3.300
3.300 | | 0.250
0.300 | | 84.150
50.490 | nth bea | | 2 | Centering and shutter girders bressumers ar | 2*51
1*51
2*100
1*100 | g strutting, e
rs
3.300
3.300
3.300
3.300 | | 0.250
0.300
0.250
0.300 | | 84.150
50.490
165.000
99.000 | nth bear | | 2 | Centering and shutter girders bressumers ar | 2*51
1*51
2*100
1*100
2*19 | g strutting, e
rs
3.300
3.300
3.300
3.300
3.300 | | 0.250
0.300
0.250
0.300
0.300 | | 84.150
50.490
165.000
99.000
37.620 | nth bear | | 2 | Centering and shutter girders bressumers ar | 2*51
1*51
2*100
1*100
2*19
1*19 | g strutting, e
rs
3.300
3.300
3.300
3.300
3.300
3.300 | | 0.250
0.300
0.250
0.300
0.300
0.250 | | 84.150
50.490
165.000
99.000
37.620
15.675 | nth bear | | | Centering and shutter girders bressumers ar | 1*19
2*34 | g strutting, e
rs
3.300
3.300
3.300
3.300
3.300
3.300
3.300 | | 0.250
0.300
0.250
0.300
0.300
0.250
0.250 | | 84.150
50.490
165.000
99.000
37.620
15.675
56.100 | nth bear | | | Centering and shutter girders bressumers ar beams | 1*19
2*34
1*34 | g strutting, e
rs
3.300
3.300
3.300
3.300
3.300
3.300
3.300 | tc. and ren | 0.250
0.300
0.250
0.300
0.250
0.250
0.250
0.300
1.200 | | 84.150
50.490
165.000
99.000
37.620
15.675
56.100
33.660 | | | | Centering and shutter girders bressumers ar beams | 1*19
2*34
1*34 | g strutting, e
rs
3.300
3.300
3.300
3.300
3.300
3.300
3.300 | 0.300 | 0.250
0.300
0.250
0.300
0.250
0.250
0.250
0.300
1.200 | n for:Lintels | 84.150
50.490
165.000
99.000
37.620
15.675
56.100
33.660
43.200 | mp | | | Centering and shutter girders bressumers ar beams | 1*19
2*34
1*34 | g strutting, e
rs
3.300
3.300
3.300
3.300
3.300
3.300
3.300 | 0.300 | 0.250 0.300 0.250 0.300 0.250 0.300 0.250 0.250 0.300 Total | n for:Lintels | 84.150
50.490
165.000
99.000
37.620
15.675
56.100
33.660
43.200
584.895 so | mp | | 3 | 20.6.1.1 Vertical load testing of and preparation of pil complete as per specapacityInitial test | e head or | constructio | n of test ca | ap and dism | nantling of | test cap aft | er test e | |---|---|-------------|--------------|--------------|---------------|--------------|--------------|-----------| | | | 1 | | | | | 1.000 | | | | | | | | Tota | al Quantity | 1.000 per | test | | | | | | To | otal Deducte | d Quantity | 0.000 per | test | | | | | | | Net Tota | al Quantity | 1.000 per | test | | | | | Say 1.000 | per test @ | Rs 53188.29 | / per test | Rs 53 | 188.29 | | | DRY RUBBLE MASON blasted rubble including labour charges etc. con Over the existing structure | g packing t | to compactne | ess to lines | and levels co | ost and con | | • | | | | IA | TON | | Tota | ⊥al Quantity | 67.601 cu | m | | | | 16/45 | | Т | otal Deducte | | 0.000 cun | า | | | | | 78/6/5/11 | on of Park | Net Tota | al Quantity | 67.601 cu | m | | | | ther E | Say | 67.601 cum | n @ Rs 2647 | 7,29 / cum | Rs 178 | 3959.45 | | 5 | 60.64.1 Coconut Pile - Supplying strata bellow bed level | | | | | | ng down thr | oug varid | | | Fender piles | 20 | | | 6.000 | | 120.000 | | | | | | | | Tota | al Quantity | 120.000 n | netre | | | | | | To | otal Deducte | d Quantity | 0.000 met | re | | | | | | | Net Tota | al Quantity | 120.000 n | netre | | | | | Say 12 | 0.000 metre | e @ Rs 137.0 | 06 / metre | Rs 16 | 447.20 | | 6 | 60.64.4 Coconut Pile - Driving charges and labour for after pointing the bottom | fixing, sta | • | | ` | • | | • | | | Fender piles | 20 | | | 4.000 | | 80.000 | | | | | | | | Tota | al Quantity | 80.000 me | etre | | | | | | To | otal Deducte | d Quantity | 0.000 met | re | | | | | | | | | | | | | | | | | Net Tota | al Quantity | 80.000 m | etre | | | 5.22.6 Steel reinforcement for binding all complete up | | _ | • | • | | | | |---|---|--|--|---|---|---|---|------------------------------------| | | Wearing coat above retaining wall | 1 | 150.000 | 0.600 | 0.150 | 10.0 | 135.000 | | | | beams | 52 | 3.600 | 0.300 | 0.250 | 90.0 | 1263.601 | | | | | 2*50 | 3.300 | 0.300 | 0.250 | 90.0 | 2227.500 | | | | slab | 1 | 150.000 | 3.600 | 0.150 | 90.0 | 7290.000 | | | | Extension of piles | 1 | 10.000 | 0.300 | 0.300 | 80.0 | 72.000 | | | | slab vertical | 1 | 3.600 | 0.150 | 0.600 | 80.0 | 25.920 | | | | Piles | 44*2 | 0.300 | 0.300 | 9.000 | 90.0 | 6415.200 | | | | | 9*2 | 0.300 | 0.300 | 9.600 | 90.0 | 1399.680 | | | | | - | £.2 1 | A E | Tota | al Quantity | 18828.901 | kilogra | | | | 611 | N. P. | To | otal Deducte | d Quantity | 0.000 kilog | gram | | | | | 11/1/1/1 | | Net Tota | al Quantity | 18828.901 | kilogra | | | | s | ay 18828.901 | 1 kilogram (| @ Rs 78.07 | / kilogram | Rs 146 | 9972.30 | | 8 | 4.1.3 Providing and laying in shuttering - All work up | • | | ement : 2 co | • | _ | | • | | 8 | Providing and laying in shuttering - All work up nominal size) Wearing coat above | • | evel:1:2:4 (ce | ement : 2 co | • | _ | | • | | 8 | Providing and laying in shuttering - All work up nominal size) Wearing coat above retaining wall | to plinth letther Ei | evel:1:2:4 (ce | ement : 2 co | parse sand : | _ | 13.500 | • | | 8 | Providing and laying in shuttering - All work up nominal size) Wearing coat above | to plinth lether Ei | evel:1:2:4 (cengineerin | ement: 2 cong org | oarse sand :
anisatio | _ | stone aggreg | • | | 8 | Providing and laying in shuttering - All work up nominal size) Wearing coat above retaining wall | to plinth lether Ei | 150.000
0.700 | 0.600
0.700 | 0.150
0.200
0.800 | _ | 13.500
1.470 | gate 20 | | 8 | Providing and laying in shuttering - All work up nominal size) Wearing coat above retaining wall | to plinth lether Ei | 150.000
0.700 | 0.600
0.700
0.500 | 0.150
0.200
0.800 | 4 graded s | 13.500
1.470
3.000 | gate 20 i | | 8 | Providing and laying in shuttering - All work up nominal size) Wearing coat above retaining wall | to plinth lether Ei | 150.000
0.700 | 0.600
0.700
0.500 | 0.150 0.200 0.800 Total Deducte | 4 graded s | 13.500
1.470
3.000
17.970 cu | m | | 8 | Providing and laying in shuttering - All work up nominal size) Wearing coat above retaining wall | to plinth lether Ei | 150.000
0.700
0.500 | 0.600
0.700
0.500 | 0.150 0.200 0.800 Total Deducte | 4 graded s | 13.500
1.470
3.000
17.970 cur
17.970 cur | m | | 9 | Providing and laying in shuttering - All work up nominal size) Wearing coat above retaining wall | 15
15
15
ooring tiles | 150.000 0.700 0.500 Say s having joints 0 kg of harde | 0.600
0.700
0.500
To
17.970 cum | 0.150 0.200 0.800 Total Deducte Net Total 0 Rs 7561 vidth, using | 4 graded sins al Quantity d Quantity al Quantity .25
/ cum epoxy grout in per kg). in | 13.500 1.470 3.000 17.970 cur 0.000 cur 17.970 cur Rs 135 | m
6875.66 | | | Providing and laying in shuttering - All work up nominal size) Wearing coat above retaining wall fndtn for lamp posts 11.48.2 Grouting the joints of flocoated filler of desired size. | 15
15
15
ooring tiles | 150.000 0.700 0.500 Say s having joints 0 kg of harde | 0.600
0.700
0.500
To
17.970 cum | 0.150 0.200 0.800 Total Deducte Net Total 0 Rs 7561 vidth, using | 4 graded sins al Quantity d Quantity al Quantity .25 / cum epoxy grout in per kg). in | 13.500 1.470 3.000 17.970 cur 0.000 cur 17.970 cur Rs 135 | m
6875.66 | | | Providing and laying in shuttering - All work up nominal size) Wearing coat above retaining wall fndtn for lamp posts 11.48.2 Grouting the joints of flocoated filler of desired size. | to plinth letter Li 15 15 15 ooring tiles shade (0.1 as per dire | 150.000 0.700 0.500 Say s having joints of kg of harder ection of Engineering | 0.600 0.700 0.500 To 17.970 cum s of 3 mm v ener and 0.3 neer-in-cha | 0.150 0.200 0.800 Total Deducte Net Total 0.20 Rs 7561 vidth, using 20 kg of resi | 4 graded sins al Quantity d Quantity al Quantity .25 / cum epoxy grout in per kg). in | 13.500 1.470 3.000 17.970 cur 0.000 cum 17.970 cur Rs 135 | m
6875.66
g of organg/ground | | | Providing and laying in shuttering - All work up nominal size) Wearing coat above retaining wall fndtn for lamp posts 11.48.2 Grouting the joints of flocoated filler of desired size. | to plinth letter Li 15 15 15 ooring tiles shade (0.1 as per dire | 150.000 0.700 0.500 Say s having joints of kg of harder ection of Engineering | 0.600 0.700 0.500 To 17.970 cum s of 3 mm v ener and 0.3 neer-in-cha 3.600 | 0.150 0.200 0.800 Total Deducte Net Total 0.20 Rs 7561 vidth, using 20 kg of resi | al Quantity d Quantity al Quantity 25 / cum epoxy groutin per kg). in Tile 600x60 | 13.500 1.470 3.000 17.970 cur 0.000 cum 17.970 cur Rs 135 | m
6875.66
g of organg/ground | | _ | | | Say : | 540.000 sq | m @ Rs 230 |).41 / sqm | Rs 124 | 1421.40 | |----|---|---|--|--|--|---
--|---| | 10 | od70939/2019_2020
Providing and laying T | | , | • | • | | • | • | | | :3Coarse sand), includ | ling pointir | Ī | | cement and | matching p | | , complete | | | | 1 | 150.000 | 3.600 | | | 540.000 | | | | | | | | Tota | al Quantity | 540.000 s | qm | | | | | | To | otal Deducte | d Quantity | 0.000 sqn | 1 | | | | | | | Net Tota | al Quantity | 540.000 s | qm | | | | | Say 5 | 40.000 sqm | n @ Rs 1140 |).36 / sqm | Rs 61 | 5794.40 | | 11 | od70972/2019_2020 Conveying RCC piles of wooden scanting, coir i | | | he pile driv | ing point by | boat from b | pank and hir | e of plank | | | | 106 | | | | | | | | | | 1 | 14 112 | ShA | 11 A 1 | al Quantity | 106.000 e | | | | | 18 | 41996 | То | otal Deducte | d Quantity | 0.000 eac | h | | | | 452 | | | Net Tota | al Quantity | 106.000 e | ach | | | | | | | | | | | | 12 | 2.6.1 | | THE WAY | in at 127 | @ Rs 1714 | | | 1783.64 | | 12 | Earth work in excava
(exceeding 30 cm in do
earth, lead up to 50 m
soil | epth, 1.5 n | echanical me | eans (Hyd
well as 10 | raulic excar
sqm on pla
n to be level | vator)/mani
n) including | ual means
disposal of | over area | | 12 | Earth work in excava
(exceeding 30 cm in do
earth, lead up to 50 m | epth, 1.5 n | echanical me | eans (Hyd
well as 10 | raulic exca
sqm on pla | vator)/mani
n) including | ual means
disposal of | over area | | 12 | Earth work in excava
(exceeding 30 cm in do
earth, lead up to 50 m
soil
foundation for lamp | epth, 1.5 n
and lift up | echanical mention in width as to 1.5 m, disp | eans (Hyd
well as 10
posed eartl | raulic excar
sqm on pla
n to be level
0.700 | vator)/mani
n) including | ual means
g disposal of
atly dressed | over area
excavate
All kinds o | | 12 | Earth work in excava
(exceeding 30 cm in do
earth, lead up to 50 m
soil
foundation for lamp | epth, 1.5 n
and lift up | echanical mention in width as to 1.5 m, disp | eans (Hyd
well as 10
posed earth
0.700 | raulic excar
sqm on pla
n to be level
0.700 | vator)/mand
n) including
led and nea | ual means
disposal of
atly dressed | over area
excavate
All kinds o | | 12 | Earth work in excava
(exceeding 30 cm in do
earth, lead up to 50 m
soil
foundation for lamp | epth, 1.5 n
and lift up | echanical mention in width as to 1.5 m, disp | eans (Hyd
well as 10
posed earth
0.700 | raulic excarsqm on pla to be level 0.700 Total | vator)/mand
n) including
led and nea | ual means g disposal of atly dressed 5.488 5.488 cum | over area
excavate
All kinds o | | 12 | Earth work in excava
(exceeding 30 cm in do
earth, lead up to 50 m
soil
foundation for lamp | epth, 1.5 n
and lift up | echanical mention in width as to 1.5 m, disp | eans (Hyd
well as 10
posed earth
0.700 | raulic excarsqm on pla to be level 0.700 Total | vator)/mand
n) including
led and near
al Quantity
d Quantity | ual means g disposal of atly dressed 5.488 5.488 cum 0.000 cum 5.488 cum | over area | | 12 | Earth work in excava
(exceeding 30 cm in do
earth, lead up to 50 m
soil
foundation for lamp | n position red cement concrete to cluding adrete, improve | echanical ment in width as to 1.5 m, display 0.700 Samachine batconcrete wo site of laying mixtures in received workability whent content of the c | eans (Hydwell as 10 posed earth 0.700 To ay 5.488 curched and mark, using one of the commend without improposidered and mark on side reductions as the commend without improposide reductions as the considered and mark on side reductions as the considered co | raulic excarsqm on planto be level 0.700 Total Deducte Net Total m @ Rs 173 machine mixed the cost of cos | vator)/manum) including led and near al Quantity al Quantity al Quantity al Quantity at Comment as per tof centering as per 1th and dura is @ 330 k | 5.488 cum 5.488 cum 5.488 cum 7.488 cum 5.488 cum 6.000 cum 5.488 cum 7.488 cum 8.59 This M-25 gra approved on ap | excavate All kinds 53.38 ade ceme design mi accelerat direction eess or les | | | | 2*50 | 3.300 | 0.300 | 0.250 | | 24.750 | | |----|--|---|---|------------------------------------|---|---|-------------------------------------|---| | | slab | 1 | 150.000 | 3.600 | 0.150 | | 81.000 | | | | Extension of piles | 30 | 1.000 | 0.300 | 0.300 | | 2.700 | | | | slab vertical | 2 | 3.600 | 0.150 | 0.600 | | 0.648 | | | | | | | | Tot | al Quantity | 123.139 c | um | | | | | | To | otal Deducte | ed Quantity | 0.000 cun | n | | | | | | | Net Tot | al Quantity | 123.139 c | um | | | | | Say 1 | 23.139 cum | n @ Rs 889 ⁻ | 1.66 / cum | Rs 109 | 4910.12 | | | Providing, driving and and length below the including centering, reinforcement. (Lengt cap).
cap).
cap | pile cap in M
shuttering,
th of pile for | 1-25 cement of driving and | concrete to | carry safe v | vorking load
but exclu | not less tha | an specif
ost of st | | | Piles | 44*2 | | 37/4 | 9.000 | | 792.000 | | | | | 9*2 | DIM | | 9.600 | 4 | 172.800 | | | | | Tolde | MA | Farly, | Tot | al Quantity | 964.800 n | netre | | | | | The same | To | otal Deducte | ed Quantity | 0.000 me | tre | | | | Othor Er | | | Net Tot | al Quantity | 964.800 n | netre | | | | Tiner Ei | Say 964. | 800 metre | @ Rs 3140. | 38 / metre | Rs 302 | 9838.62 | | | od199803/2020_2021 | | of the RCC I | | | - | without da | maging | | 15 | Chipping and removing remaining portion and | | the
debris u | ıpto distan | ce of 50m. | complete | | | | 15 | | | the debris u | ipto distani
0.300 | 0.300 | Complete | 9.540 | | | 15 | | d removing | | | 0.300 | al Quantity | 9.540
9.540 cun | n | | 15 | | d removing | | 0.300 | 0.300 | al Quantity | | | | 15 | | d removing | | 0.300 | 0.300
Tot
otal Deducte | al Quantity | 9.540 cun | n | | 15 | | d removing | 1.000 | 0.300
To | 0.300
Tot
otal Deducte | al Quantity ed Quantity al Quantity | 9.540 cun
0.000 cun
9.540 cun | n | | 16 | | 106 position 150 ant concrete m dia ancho | 1.000 Say mm dia Bolla M25 mix joint or bolt ,drilling | 0.300 To 7 9.540 cum rds 300 mr | 0.300 Totolotal Deducted Net Totology (Principle of the Principle | al Quantity ed Quantity al Quantity 2.25 / cum providing 20 150x150x8 | 9.540 cun 0.000 cun 9.540 cun Rs 16 | 6621.07 SS steel e welded | | | od86108/2019_2020 Precasting placing in at top filled with ceme bottom including 16m | 106 position 150 ant concrete m dia ancho | 1.000 Say mm dia Bolla M25 mix joint or bolt ,drilling | 0.300 To 7 9.540 cum rds 300 mr | 0.300 Totolotal Deducted Net Totology (Principle of the Principle | al Quantity ed Quantity al Quantity 2.25 / cum providing 20 150x150x8 | 9.540 cun 0.000 cun 9.540 cun Rs 16 | 6621.07 SS steel | | | od86108/2019_2020 Precasting placing in at top filled with ceme bottom including 16m | position 150 ant concrete m dia ancho ngineer at si | 1.000 Say mm dia Bolla M25 mix joint or bolt ,drilling | 0.300 To 7 9.540 cum rds 300 mr | 0.300 Toto tal Deducted Net Toto @ Rs 1742 In high
ed and with welding etc | al Quantity ed Quantity al Quantity 2.25 / cum providing 20 150x150x8 | 9.540 cun 0.000 cun 9.540 cun Rs 16 | 6621.07
SS steel
e welded
per direct | | | | | | | Net Tota | al Quantity | 12.000 ea | ch | |-------|--|---|---|--|---|---|--|--| | | | | Say 12 | 000 each @ | ② Rs 11418 | .73 / each | Rs 137 | 7024.76 | | 17 | 10.28 Providing and fixing stincluding welding, grind same with necessary accessories & stainless floor or the side of wa payment purpose onlaccessories such as | ding, buffin
stainless s
s steel dash
iist slab wit
ly weight o | ng, polishing
steel nuts a
in fasteners,
th suitable a
of stainless | and making
nd bolts co
stainless stearrangemen
steel men | g curvature
omplete, i/c
eel bolts etc
t as per ap | (wherever r
fixing the
., of require
proval of E | required) an
railing with
d size on th
ngineer-in-c | d fitting th
necessar
e top of th
charge, (fo | | | accessories such as | 1 | 45.000 | 1.200 | | 15.0 | 810.000 | | | | | • | 10.000 | 1.200 | Tota | al Quantity | 810.000 k | α | | | | | 160 | To | otal Deducte | · · · · · · · · · · · · · · · · · · · | 0.000 kg | 9 | | | | | 6.03 | | | al Quantity | 810.000 k | a | | | | 1 | | Say 810.000 |) kg @ Rs 6 | <u> </u> | | 7779.80 | | SI No | Description | No | L | В | D | CF | Quantity | Remark | | | | | | | | | | | | 1 | 60.7.1
DRY RUBBLE MASON | NRY _ Dry | | out concret | e levelling (| course mas | | • | | 1 | 60.7.1 | NRY _ Dry
g packing to
mplete as p | rubble with | out concret | e levelling o | course mas | | • | | 1 | 60.7.1 DRY RUBBLE MASON blasted rubble including labour charges etc. cor Pathway parallel to | NRY _ Dry
g packing to
mplete as p | rubble with compactne | out concret
ss to lines a
of Departme | e levelling of and levels coental officers | course mas | veyance of a | • | | 1 | 60.7.1 DRY RUBBLE MASON blasted rubble including labour charges etc. cor Pathway parallel to | NRY _ Dry
g packing to
mplete as p | rubble with compactne er direction 40.000 | out concret
ess to lines a
of Departme
0.700 | e levelling of and levels contain officers | course mas | 14.000 | • | | 1 | 60.7.1 DRY RUBBLE MASON blasted rubble including labour charges etc. cor Pathway parallel to | NRY _ Dry
g packing to
mplete as p | rubble with compactne er direction 40.000 | out concret
ess to lines a
of Departme
0.700 | e levelling of and levels contain officers 0.500 | course mas | 14.000
10.000 | • | | 1 | 60.7.1 DRY RUBBLE MASON blasted rubble including labour charges etc. cor Pathway parallel to | NRY _ Dry
g packing to
mplete as p | rubble with compactneer direction 40.000 | out concret ess to lines a of Departme 0.700 0.500 1.200 | e levelling of and levels contain officers 0.500 0.500 0.500 1.500 | course mas | 14.000
10.000
6.181 | all materia | | 1 | 60.7.1 DRY RUBBLE MASON blasted rubble including labour charges etc. cor Pathway parallel to | NRY _ Dry
g packing to
mplete as p | rubble with compactneer direction 40.000 | out concret ess to lines a of Departme 0.700 0.500 1.200 (1+.5)/2 | e levelling of and levels contain officers 0.500 0.500 0.500 1.500 | course mas
ost and con-
at site | 14.000
10.000
6.181
11.588 | all materia | | 1 | 60.7.1 DRY RUBBLE MASON blasted rubble including labour charges etc. cor Pathway parallel to | NRY _ Dry
g packing to
mplete as p | rubble with compactneer direction 40.000 | out concret ess to lines a of Departme 0.700 0.500 1.200 (1+.5)/2 | e levelling of and levels contain officers 0.500 0.500 1.500 Total officers | course mas
ost and con-
at site | 14.000
10.000
6.181
11.588
41.769 cu | all materia | | 1 | 60.7.1 DRY RUBBLE MASON blasted rubble including labour charges etc. cor Pathway parallel to | NRY _ Dry
g packing to
mplete as p | rubble with compactneer direction 40.000 40.000 10.300 | out concret ess to lines a of Departme 0.700 0.500 1.200 (1+.5)/2 | e levelling of and levels contain officers 0.500 0.500 1.500 Total officers | al Quantity d Quantity | 14.000
10.000
6.181
11.588
41.769 cu
0.000 cum
41.769 cu | m | | 2 | 60.7.1 DRY RUBBLE MASON blasted rubble including labour charges etc. cor Pathway parallel to | NRY _ Dry g packing to mplete as p 1 1 1 1 1 1 1 1 1 1 | rubble with compactneer direction 40.000 40.000 10.300 10.300 Say | out concret ass to lines a of Departme 0.700 0.500 1.200 (1+.5)/2 To 41.769 cum eans (Hydi well as 10 | e levelling of and levels contain officers 0.500 0.500 1.500 Total Deducte Net Total @ Rs 2647 raulic excapage sqm on pla | al Quantity d Quantity al Quantity 7.29 / cum | 14.000 10.000 6.181 11.588 41.769 cu 0.000 cum 41.769 cu Rs 110 | m 0574.66 over area | | | 60.7.1 DRY RUBBLE MASON blasted rubble including labour charges etc. cor Pathway parallel to existing jetty 2.6.1 Earth work in excava (exceeding 30 cm in deearth, lead up to 50 m | NRY _ Dry g packing to mplete as p 1 1 1 1 1 and lift up to | rubble with compactneer direction 40.000 40.000 10.300 10.300 Say | out concret ass to lines a of Departme 0.700 0.500 1.200 (1+.5)/2 To 41.769 cum eans (Hydi well as 10 | e levelling of and levels contain officers 0.500 0.500 1.500 Total Deducte Net Total @ Rs 2647 raulic excapage sqm on pla | al Quantity d Quantity al Quantity 7.29 / cum | 14.000 10.000 6.181 11.588 41.769 cu 0.000 cum 41.769 cu Rs 110 | m 0574.66 over area | | | | | | | Tota | al Quantity | 20.181 cu | m | |---|---|--|---|---|---|---|--|---| | | | | | To | otal Deducte | d Quantity | 0.000 cum | 1 | | | | | | | Net Tota | al Quantity | 20.181 cu | m | | | | | Sa | y 20.181 cu | m @ Rs 173 | 3.72 / cum | Rs 35 | 505.84 | | 3 | od199462/2020_2021 Providing and laying 80 made by block making r in required colour and p filling the joints with fine | nachine v
attern ov | vith strong vit
er and includ | oratory com
ing 50 mm | paction, of a
thick compa | pproved siz | ze, design &
6mm stone | shape, lai | | | Road adjacent to highway | 1 | 77.000 | 3.600 | | | 277.200 | | | | below the bridge | 1 | 17.500 | 3.600 | | | 63.000 | | | | | 1 | 13.800 | 3.600 | | | 49.681 | | | | | 1 | 15.400 | 3.600 | 1 | | 55.441 | | | | | 11 | | 20/2 | Tota | al Quantity | 445.322 s | qm | | | | B | DE | To | otal Deducte | d Quantity | 0.000 sqm | 1 | | | | 4 | | | Net Tota | al Quantity | 445.322 s | qm | | | | | Say | 445.322 sq | m @ Rs 862 | 2.72 / sqm | Rs 384 | 1188.20 | | | Providing and laying in concrete for reinforced including pumping of coand reinforcement, including setting of concrete Engineer-in-charge. Not cement used as per de Pathway parallel to | cement
oncrete to
uding ad
e, improve
e: Ceme
esign mix | site of laying
mixtures in re
workability
nt content co
is payable of | ork, using or
g but
exclude
ecommend
without imponsidered in
or recoveral | eement conti
ding the cos
ed proportion
airing streng
in this item in
the separate | ent as per
t of centering
ons as per
th and dura
s @ 330 kg | approved ong, shuttering is: 9103 to ability as per g/ cum. Exceeding to plint | design mix
g, finishing
accelerate
direction c
ess or les | | | existing jetty | 1 | 50.000 | 2.250 | 0.150 | | 16.875 | | | | beams | 17 | 3.400 | 0.200 | 0.150 | | 1.735 | | | | | | | | Tota | al Quantity | 18.610 cu | m | | | | | | To | otal Deducte | d Quantity | 0.000 cum |) | | | | | | | Net Tota | al Quantity | 18.610 cu | m | | | | | Say | 18.610 cum | n @ Rs 8891 | .64 / cum | Rs 165 | 5473.42 | | 5 | 4.1.3 Providing and laying in shuttering - All work up nominal size) | | | • | • | _ | | • | | | Road adjacent to highway | 2 | 77.000 | 0.200 | 0.400 | | 12.320 | | |---|--|--|--|------------|---|-------------|---|---------| | | | 2 | 5.000 | 0.200 | 0.400 | | 0.800 | | | | below the bridge | 2 | 10.000 | 0.200 | 0.400 | | 1.600 | | | | | 2 | 17.500 | 0.200 | 0.400 | | 2.801 | | | | | 2 | 5.000 | 0.200 | 0.400 | | 0.800 | | | | | 2 | 13.800 | 0.200 | 0.400 | | 2.208 | | | | | 2 | 5.000 | 0.200 | 0.400 | | 0.800 | | | | | 2 | 15.400 | 0.200 | 0.400 | | 2.465 | | | | Span 2 | 2 | 6.800 | 0.200 | 0.400 | | 1.088 | | | | | 2 | 11.500 | 0.200 | 0.400 | | 1.841 | | | | | | 1.01 | | Tota | al Quantity | 26.723 cu | m | | | | 1 | 37 9 | To | otal Deducte | d Quantity | 0.000 cum | 1 | | | | 16 | | 30/2 | Net Tota | al Quantity | 26.723 cui | m | | | | | Say | 26.723 cum | n @ Rs 7561 | .25 / cum | Rs 202 | 2059.2 | | 6 | 5.9.3 Centering and shutter landings, balconies as | - | | | | | spended flo | oors, r | | 6 | Centering and shutter | nd access | platform | | removal of t | | 170.000 | oors, r | | 6 | Centering and shutter landings, balconies at Pathway parallel to | nd access
ther En | platform | | | | | oors, r | | 6 | Centering and shutter landings, balconies at Pathway parallel to | ther En | platform
gineeri
50.000 | | anisatio | | 170.000 | pors, r | | 6 | Centering and shutter landings, balconies at Pathway parallel to existing jetty | ther En | platform
gineeri
50.000
50.000 | | anisatio | | 170.000 | oors, r | | 6 | Centering and shutter landings, balconies at Pathway parallel to existing jetty beams Road adjacent to | ther En | 50.000
50.000
3.400 | | 0.150
0.150 | | 170.000
15.000
17.340 | oors, r | | 6 | Centering and shutter landings, balconies at Pathway parallel to existing jetty beams Road adjacent to | ther En | 50.000
50.000
3.400
77.000 | | 0.150
0.400 | | 170.000
15.000
17.340
61.600 | oors, r | | 6 | Centering and shutter landings, balconies as Pathway parallel to existing jetty beams Road adjacent to highway | ther En | 50.000
50.000
3.400
77.000
5.000 | | 0.150
0.150
0.400 | | 170.000
15.000
17.340
61.600
4.000 | oors, r | | 6 | Centering and shutter landings, balconies as Pathway parallel to existing jetty beams Road adjacent to highway | ther En | 50.000
50.000
3.400
77.000
5.000
17.500 | | 0.150
0.150
0.400
0.400 | | 170.000
15.000
17.340
61.600
4.000
14.000 | oors, r | | 6 | Centering and shutter landings, balconies as Pathway parallel to existing jetty beams Road adjacent to highway | ther English 2 2 2 2 2 2 | 50.000
50.000
3.400
77.000
5.000
10.000 | | 0.150
0.150
0.400
0.400
0.400 | | 170.000
15.000
17.340
61.600
4.000
14.000
8.000 | oors, r | | 6 | Centering and shutter landings, balconies as Pathway parallel to existing jetty beams Road adjacent to highway | ther English 2 2 2 2 2 2 2 2 | 50.000
50.000
3.400
77.000
5.000
10.000
5.000 | | 0.150
0.150
0.400
0.400
0.400
0.400 | | 170.000
15.000
17.340
61.600
4.000
14.000
8.000
4.000 | oors, r | | 6 | Centering and shutter landings, balconies as Pathway parallel to existing jetty beams Road adjacent to highway | ther English 2 2 2 2 2 2 2 2 2 2 | 50.000
50.000
77.000
5.000
10.000
5.000
13.800 | | 0.150
0.150
0.400
0.400
0.400
0.400
0.400 | | 170.000
15.000
17.340
61.600
4.000
14.000
8.000
4.000
11.041 | pors, r | | | Centering and shutter landings, balconies as Pathway parallel to existing jetty beams Road adjacent to highway | ther English 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 50.000
50.000
3.400
77.000
5.000
10.000
5.000
13.800
5.000 | | 0.150
0.150
0.400
0.400
0.400
0.400
0.400
0.400 | | 170.000
15.000
17.340
61.600
4.000
14.000
8.000
4.000
11.041
4.000 | pors, r | | | Centering and shutter landings, balconies as Pathway parallel to existing jetty beams Road adjacent to highway | ther English access ther English access there are a second access the th | 50.000
50.000
3.400
77.000
5.000
10.000
5.000
13.800
5.000
15.400 | | 0.150
0.150
0.400
0.400
0.400
0.400
0.400
0.400
0.400 | | 170.000
15.000
17.340
61.600
4.000
14.000
8.000
4.000
11.041
4.000
12.320 | pors, r | | | | | | To | otal Deducte | d Quantity | 0.000 sqm | 1 | |---|--|---|--|---|--|---|---|--| | | | | | | Net Tota | al Quantity | 335.942 s | qm | | | | | Say | 335.942 sq | m @ Rs 582 | 2.48 / sqm | Rs 195 | 5679.50 | | 7 | 5.22.6
Steel reinforcement fo
binding all complete u | | - | - | | | | | | | beams | 17 | 3.400 | 0.200 | 0.150 | 80.0 | 138.721 | | | | Road adjacent to highway | 2 | 77.000 | 0.200 | 0.400 | 60.0 | 739.200 | | | | | 2 | 5.000 | 0.200 | 0.400 | 60.0 | 48.000 | | | | below the bridge | 2 | 10.000 | 0.200 | 0.400 | 60.0 | 96.000 | | | | | 2 | 17.500 | 0.200 | 0.400 | 60.0 | 168.001 | | | | | 2 | 5.000 | 0.200 | 0.400 | 60.0 | 48.000 | | | | | 2 | 13.800 | 0.200 | 0.400 | 60.0 | 132.481 | | | | | 2 | 5.000 | 0.200 | 0.400 | 60.0 | 48.000 | | | | | 2 | 15.400 | 0.200 | 0.400 | 60.0 | 147.841 | | | | Span 2 | 2 | 6.800 | 0.200 | 0.400 | 60.0 | 65.280 | | | | | 2 | 11.500 | 0.200 | 0.400 | 60.0 | 110.401 | | | | 0 | ther E | ngineeri | ng Org | anisa t ic | al Quantity | 1741.925 | kilogram | | | | | D | To | otal Deducte | d Quantity | 0.000 kilo | gram | | | | | | | Net Tota | al Quantity | 1741.925 | kilogram | | | | | Say 1741.92 | 5 kilogram (| @ Rs 78.07 | / kilogram | Rs 13 | 5992.08 | | 8 | Providing and fixing st
including welding, grind
same with necessary
accessories & stainless
floor or the side of wa
payment purpose onl
accessories such as | ding, buffir
stainless
s steel das
ist slab wi
y weight | ng, polishing
steel nuts a
h fasteners,
th suitable a
of stainless | and making
nd bolts co
stainless sta
arrangemen
steel men |
g curvature
omplete, i/c
eel bolts etc
at as per ap | (wherever r
fixing the
., of require
proval of E | equired) an
railing with
d size on th
ngineer-in-c | d fitting the
necessary
e top of the
charge, (for | | | existing jetty | 1 | 48.000 | | 1.200 | 15.0 | 864.000 | | | | | | | | Tota | al Quantity | 864.000 k | g | | | | | | To | otal Deducte | d Quantity | 0.000 kg | | | | | | | | Net Tota | al Quantity | 864.000 k | g | | | | | 5 | Say 864.000 |) kg @ Rs 6 | 51.58 / kg | Rs 562 | 2965.12 | | 9 | 60.64.1 | | | | | | | | | | | 6 | | | 8.000 | | 48.000 | | |----|--|---|--|---|---|---|--|---| | | | | | | Tot | al Quantity | 48.000 m | etre | | | | | | To | otal Deducte | d Quantity | 0.000 me | tre | | | | | | | Net Tot | al Quantity | 48.000 m | etre | | | | | Say 48 | 8.000 metre | e @ Rs 137. | 06 / metre | Rs 6 | 578.88 | | 10 | 60.64.4 Coconut Pile - Driving charges and labour for after pointing the bottor | fixing, sta | • | | | - | | - | | | | 6 | 1/403 | 1/402 | 6.000 | | 36.000 | | | | | | 5.27 | | Tot | al Quantity | 36.000 m | etre | | | | 6 | | To | otal Deducte | d Quantity | 0.000 me | tre | | | | 15 | 4 1 | 576 W 1 | Net Tot | al Quantity | 36.000 m | etre | | | | 132 | Say 36 | 6.000 metre | @ Rs 739. | 31 / metre | Rs 26 | 615.16 | | - | 16.78.2 Construction of granularizing in a mechanical | mix plant | at OMC, Carı | riage of mix | ed material | by tippers to | o work site, | for all lea | | | Construction of granular mixing in a mechanical & lifts, spreading in uncompacting with vibrate directions of Engineer-in | mix plant
iform laye
ory power i | at OMC, Care
irs of specific
coller to achie | riage of mix
ed thicknes
eve the desi | ed material
s with moto
red density, | by tippers to
of grader on
complete as | o work site, prepared s per specifi | for all leasurface a
cations a | | - | Construction of granular mixing in a mechanical & lifts, spreading in un compacting with vibrato | mix plant
iform laye
ory power i | at OMC, Care
irs of specific
coller to achie | riage of mix
ed thicknes
eve the desi | ed material
s with moto
red density, | by tippers to
of grader on
complete as | o work site, prepared s per specifi | for all leasurface a
cations a | | | Construction of granular mixing in a mechanical & lifts, spreading in uncompacting with vibrate directions of Engineer-inhaving CBRValue-25 Pathway parallel to | mix plant
iform laye
ory power i
n- Charge | at OMC, Carriers of specific
roller to achie
.With materia | riage of mix
ed thicknes
eve the desi | ed material
s with motored density,
g to Grade- | by tippers to
of grader on
complete as | o work site, prepared s s per specifi e 53 mm to | for all leasurface a
cations a | | | Construction of granular mixing in a mechanical & lifts, spreading in uncompacting with vibrate directions of Engineer-inhaving CBRValue-25 Pathway parallel to exixting jetty Road adjacent to | mix plant
iform laye
ory power i
n- Charge | at OMC, Carrers of specific
roller to achie
With materia | riage of mixed thicknesseve the desiral conforming | ed material
s with moto
red density,
g to Grade-
0.200 | by tippers to
of grader on
complete as | o work site, prepared s s per specifi e 53 mm to | for all leasurface a
cations a | | | Construction of granular mixing in a mechanical & lifts, spreading in uncompacting with vibrate directions of Engineer-inhaving CBRValue-25 Pathway parallel to exixting jetty Road adjacent to highway | mix plant iform laye ory power i n- Charge 1 | at OMC, Carrers of specific coller to achie with materia 48.500 | riage of mixed thickness eve the desiral conforming 2.250 | eed material
s with motored density,
g to Grade-
0.200 | by tippers to
of grader on
complete as | o work site, prepared s s per specifi e 53 mm to 21.826 | for all leasurface a
cations a | | | Construction of granular mixing in a mechanical & lifts, spreading in uncompacting with vibrate directions of Engineer-inhaving CBRValue-25 Pathway parallel to exixting jetty Road adjacent to highway | mix plant iform laye ory power i n- Charge 1 1 | at OMC, Carrers of specific coller to achie with materia 48.500 77.000 | riage of mixed thickness eve the desiral conforming 2.250 3.600 | ed material
s with motored density,
g to Grade-
0.200
0.200 | by tippers to
of grader on
complete as | o work site, prepared s s per specifi e 53 mm to 21.826 55.440 12.601 | for all leasurface a
cations a | | | Construction of granular mixing in a mechanical & lifts, spreading in uncompacting with vibrate directions of Engineer-inhaving CBRValue-25 Pathway parallel to exixting jetty Road adjacent to highway | mix plant iform laye bry power i n- Charge 1 1 1 | at OMC, Carrers of specific coller to achie with materia 48.500 77.000 13.800 | riage of mixed thickness we the desiral conforming 2.250 3.600 3.600 | ed material
s with motored density,
g to Grade-
0.200
0.200
0.200 | by tippers to
of grader on
complete as | 21.826
55.440
19.937 | for all leasurface a
cations a | | | Construction of granular mixing in a mechanical & lifts, spreading in uncompacting with vibrate directions of Engineer-inhaving CBRValue-25 Pathway parallel to exixting jetty Road adjacent to highway below the bridge | mix plant iform laye ory power i n- Charge 1 1 1 1 1 | at OMC, Carrers of specific coller to achie with material 48.500 77.000 13.800 15.400 | riage of mixed thickness eve the desiral conforming 2.250 3.600 3.600 3.600 | ed material s with motored density, g to Grade- 0.200 0.200 0.200 0.200 | by tippers to
of grader on
complete as | 21.826
21.826
55.440
12.601
9.937
11.089 | for all leasurface a
cations a | | | Construction of granular mixing in a mechanical & lifts, spreading in uncompacting with vibrate directions of Engineer-inhaving CBRValue-25 Pathway parallel to exixting jetty Road adjacent to highway below the bridge | mix plant iform laye bry power i n- Charge 1 1 1 1 1 | at OMC, Carrers of specific coller to achie with material 48.500 77.000 13.800 15.400 48.500 | riage of mixed thickness eve the desiral conforming 2.250 3.600 3.600 2.250 | ed material s with motored density, g to Grade- 0.200 0.200 0.200 0.200 0.150 0.150 | by tippers to
of grader on
complete as | 21.826
55.440
12.601
9.937
11.089 | for all leasurface a cations a 0.075 mi | | 11 | Construction of granular mixing in a mechanical & lifts, spreading in uncompacting with vibrate directions of Engineer-inhaving CBRValue-25 Pathway parallel to exixting jetty Road adjacent to highway below the bridge | mix plant iform laye bry power i n- Charge 1 1 1 1 1 | at OMC, Carrers of specific coller to achie with material 48.500 77.000 13.800 15.400 48.500 | riage of mixed thickness eve the desiral conforming 2.250 3.600 3.600 2.250 3.600 | ed material s with motored density, g to Grade- 0.200 0.200 0.200 0.200 0.150 0.150 | by tippers to grader on complete as II (size rang | 21.826
55.440
12.601
9.937
11.089
16.369 | for all leasurface a cations a 0.075 mr | | | Construction of granular mixing in a mechanical & lifts, spreading in uncompacting with vibrate directions of Engineer-inhaving CBRValue-25 Pathway parallel to exixting jetty Road adjacent to highway below the bridge | mix plant iform laye bry power i n- Charge 1 1 1 1 1 | at OMC, Carrers of specific coller to achie with material 48.500 77.000 13.800 15.400 48.500 | riage of mixed thickness eve the desiral conforming 2.250 3.600 3.600 2.250 3.600 | ed material s with motored density, g to Grade- 0.200 0.200 0.200 0.200 0.150 Totoptal Deducted | by tippers to grader on complete as II (size rang | 21.826
55.440
12.601
9.937
11.089
16.369
13.500 | for all leasurface a cations a 0.075 mi | | SI No | Desc | cription | No | L | В | D | CF | Quantity | Remark | |--------
--|--|--|--|--|---|--|---|---| | | | | 3 / | Appendix C | : Solar light | ing | | | | | 1 | SITC of Second CDL, 40W 6800 lumer (Details attarmless per complete for the th | LED Crorns having of tached separate of cast in its contract of cast in its contract on exit in the contract of o | ghting Systementon maked dimenssions arately) suitale on with bottonsisting cementer AMC converse of the conve | / Equilant h
(Approx) 95
ble to fit on to
m dia.200m
nt concrete | naving 60W
5 X 630 X subular pole.
m with base | solar modu
55 (LWH) h
(b) Pole :- 3
plate and to | ule Wp with
aing appro:
3.5/4 Mtr. lor
op dia. 100r | n 27 Ah batt
ximate weig
ng (clear hei
mm, foundat | ery havii
ht of 19k
ght -210k
ion bolt e | | | solar LED | | 15 | | | | | 15.000 | | | | | <u> </u> | | | | Tota | al Quantity | 15.000 ea | ch | | | | | | 1 Con | То | tal Deducte | | 0.000 eac | | | | | | | -1 | W 650 | | al Quantity | 15.000 ea | | | | | | 1 | Sav 15.0 | 000 each @ | h. | <u> </u> | | 4395.00 | | SI No | Desc | cription | No | L | В | D | CF | Quantity | Remark | | | | | | 4 7% Centa | ge Charges | 3 | | | | | | | L | ump-Sum To | otal | | | F | Rs 837735.7 | 8 | | | SI No | Des | scription | No | L | В | D | CF | Quantity | | Remark | | | | 5 | GST @ 12 | % | | | | | | | (| ump-Sum To | gineeri | ng Orga | anisatio | ns R | s 1436118.4 | 18 | | | SI No | | scription | No | L | В | D | CF | Quantity | | Remark | | | | 6 GST @ 1 | 3% on centa | age charge | s | | | | | | L | ump-Sum To | otal | | | F | Rs 150792.4 | 4 | | | | | | Pro | ovision for G | ST paymen | ts (in %) @ | 0. | 0% | | | I | | ŀ | Amount rese | rved for GS ⁻ | T payments | · · · · · · | 0.00 | | | | | | | | | Total | | 14392300.0 | 0 | | | | | | | Lumpsum fo | | | 7700.00 | | | | | | | | Lumpsum ii | or round on | | | 1400000 | | | | | | | | | | OTAL Rs 14 | | | | | | | | | | | d Total Rs 1 | | | | | | | | | Rupe | es One Cror | e Forty Fou | r Lakh O | (Cost Index Applied for this estimate is 37.93%)